Author:
Zhang Rong,Niu Huifang,Wang Ning,Sun Lihua,Xu Yi,Zhao Ruibo,Ban Xiang,Yu Yao,Yang Baofeng,Ai Jing
Abstract
Abstract
Background
Daming capsule (DMC), a traditional Chinese formula, has a lipid-modulating action with reduced adverse side effects as compared with other lipid lowering compounds. Since endothelial dysfunction often accompanies the hyperlipidemic state, we hypothesize that DMC might restore endothelial dysfunction produced by a high-fat (HF) diet. Importantly, we also investigate possible mechanisms involved in mediating the effects of DMC on vascular reactivity.
Methods
Rats were divided into four groups: control, HF diet, HF mixed DMC diet, HF mixed atorvastatin (ATV) diet. After 30 days, the thoracic cavity was exposed to remove the thoracic aorta for (i) histological examination; (ii) measurement of endothelial nitric oxide synthase (eNOS) by western blot; and (iii) tension study of thoracic aortic ring.
Results
HF diet induced significant attenuation in the contraction and relaxation of rat aortic rings. Treatment with DMC significantly improved the relaxation of the aortic rings as compared with those from HF rats (P < 0.05), which was abolished by a nonspecific NOS inhibitor L-NAME. Moreover DMC significantly restored the decrease in eNOS expression induced by HF diet. Similar results were found in histopathologic changes. DMC failed to restore the loss of vasocontraction of aorta explained by an impairment of ATP-sensitive K+ channels (KATP) on the structure and/or function. DMC exerted the same protective effect as ATV, a positive control drug, on vascular injury produced by HF diet.
Conclusion
DMC partially protects the aorta from HF-induced endothelial dysfunction via upregulation of the expression of eNOS.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,General Medicine
Reference28 articles.
1. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P: Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA. 2003, 100 (4): 2112-2116.
2. Magne J, Huneau JF, Tsikas D, Delemasure S, Rochette L, Tome D, Mariotti F: Rapeseed protein in a high-fat mixed meal alleviates postprandial systemic and vascular oxidative stress and prevents vascular endothelial dysfunction in healthy rats. J Nutr. 2009, 139 (9): 1660-1666.
3. Barringer TA, Hatcher L, Sasser HC: Potential Benefits on Impairment of Endothelial Function after a High-fat Meal of 4 weeks of Flavonoid Supplementation. Evid Based Complement Alternat Med. 2008
4. Yang N, Ying C, Xu M, Zuo X, Ye X, Liu L, Nara Y, Sun X: High-fat diet up-regulates caveolin-1 expression in aorta of diet-induced obese but not in diet-resistant rats. Cardiovasc Res. 2007, 76 (1): 167-174.
5. Taylor AM, Li F, Thimmalapura P, Gerrity RG, Sarembock IJ, Forrest S, Rutherford S, McNamara CA: Hyperlipemia and oxidation of LDL induce vascular smooth muscle cell growth: an effect mediated by the HLH factor Id3. J Vasc Res. 2006, 43 (2): 123-130.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献