Author:
Henneges Carsten,Bullinger Dino,Fux Richard,Friese Natascha,Seeger Harald,Neubauer Hans,Laufer Stefan,Gleiter Christoph H,Schwab Matthias,Zell Andreas,Kammerer Bernd
Abstract
Abstract
Background
Breast cancer belongs to the most frequent and severe cancer types in human. Since excretion of modified nucleosides from increased RNA metabolism has been proposed as a potential target in pathogenesis of breast cancer, the aim of the present study was to elucidate the predictability of breast cancer by means of urinary excreted nucleosides.
Methods
We analyzed urine samples from 85 breast cancer women and respective healthy controls to assess the metabolic profiles of nucleosides by a comprehensive bioinformatic approach. All included nucleosides/ribosylated metabolites were isolated by cis-diol specific affinity chromatography and measured with liquid chromatography ion trap mass spectrometry (LC-ITMS). A valid set of urinary metabolites was selected by exclusion of all candidates with poor linearity and/or reproducibility in the analytical setting. The bioinformatic tool of Oscillating Search Algorithm for Feature Selection (OSAF) was applied to iteratively improve features for training of Support Vector Machines (SVM) to better predict breast cancer.
Results
After identification of 51 nucleosides/ribosylated metabolites in the urine of breast cancer women and/or controls by LC- ITMS coupling, a valid set of 35 candidates was selected for subsequent computational analyses. OSAF resulted in 44 pairwise ratios of metabolite features by iterative optimization. Based on this approach ultimately estimates for sensitivity and specificity of 83.5% and 90.6% were obtained for best prediction of breast cancer. The classification performance was dominated by metabolite pairs with SAH which highlights its importance for RNA methylation in cancer pathogenesis.
Conclusion
Extensive RNA-pathway analysis based on mass spectrometric analysis of metabolites and subsequent bioinformatic feature selection allowed for the identification of significant metabolic features related to breast cancer pathogenesis. The combination of mass spectrometric analysis and subsequent SVM-based feature selection represents a promising tool for the development of a non-invasive prediction system.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference38 articles.
1. World Health Organization (WHO), Causes of death. 2008, [http://www.who.int/entity/healthinfo/statistics/bodgbddeathdalyestimates.xls]
2. Khatcheressian JL, Wolff AC, Smith TJ, Grunfeld E, Muss HB, Vogel VG, Halberg F, Somerfield MR, Davidson NE: American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol. 2006, 24: 5091-5097.
3. Garcia GA, Goodenough-Lashua DM: Mechanism of RNA-Modifying and -Editing Enzymes. Modification and Editing of RNA. Edited by: Grosjean H, Benne R. 1998, Washington: American Society for Microbiology, 1: 135-168. first
4. The RNA Modification Database. 2008, [http://library.med.utah.edu/RNAmods/]
5. Schram KH: Urinary nucleosides. Mass Spectrom Rev. 1998, 17: 131-251.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献