Author:
Matte Isabelle,Lane Denis,Bachvarov Dimcho,Rancourt Claudine,Piché Alain
Abstract
Abstract
Background
Malignant ascites is often present at diagnostic in women with advanced ovarian cancer (OC) and its presence is associated with a worse outcome. Human peritoneal mesothelial cells (HPMCs) are key components of malignant ascites. Although the interplay between HPMCs and OC cells is believed to be critical for tumor progression, it has not been well characterized. The purpose of this study was to assess the effect of ascites on HPMCs and clarify the role of HPMCs in OC progression.
Methods
Human OC ascites and benign peritoneal fluids were assessed for their ability to stimulate HPMC proliferation. Conditioned medium from ascites- and benign fluid-stimulated HPMCs were compared for their ability to attenuate apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). We conducted a comparative analysis of global expression changes in ascites-stimulated HPMCs using Agilent oligonucleotide microarrays.
Results
As compared to benign peritoneal fluids, malignant ascites stimulated the proliferation of HPMCs. TRAIL-induced apoptosis was attenuated in OC cells exposed to conditioned medium from ascites-stimulated HPMCs as compared to OC cells exposed to conditioned medium from benign fluid-stimulated HPMCs. A total of 649 genes were differentially expressed in ascites-stimulated HPMCs. Based on a ratio of more than 1.5-fold and a P < 0.05, 484 genes were up-regulated and 165 genes were down-regulated in ascites-exposed HPMCs. Stimulation of HPMCs with OC ascites resulted in differential expression of genes mainly associated with the regulation of cell growth and proliferation, cell death, cell cycle and cell assembly and organization, compared to benign peritoneal fluids. Top networks up-regulated by OC ascites included Akt and NF-κB survival pathways whereas vascular endothelial growth factor (VEGF) pathway was down-regulated.
Conclusions
The results of this study not only provide evidence supporting the importance of the interplay between cancer cells and HPMCs but also define the role that the tumor environment plays in these interactions.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference34 articles.
1. Partridge EE, Barnes MN: Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin. 1999, 49: 297-320. 10.3322/canjclin.49.5.297.
2. Kipps E, Tan DS, Kaye SB: Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013, 13: 273-282. 10.1038/nrc3432.
3. Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009, 9: 415-428. 10.1038/nrc2644.
4. Lane D, Matte I, Rancourt C, Piché A: The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer. J Ovarian Res. 2010, 3: 1-10.1186/1757-2215-3-1.
5. Matte I, Lane D, Laplante C, Rancourt C, Piché A: Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012, 2: 566-580.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献