Author:
Akasaka Harue,Sato Fuyuki,Morohashi Satoko,Wu Yunyan,Liu Yang,Kondo Jun,Odagiri Hiroki,Hakamada Kenichi,Kijima Hiroshi
Abstract
Abstract
Background
Claudin-1 is a membrane protein of tight junctions, and is associated with the development of various cancers. However, the significance of claudin-1 expression in cancer cells is not well understood. Here, we showed for the first time the anti-apoptotic effect of claudin-1 in human breast cancer MCF-7 cells.
Methods
Human breast cancer MCF-7 and T47 D cells were treated with or without tamoxifen, siRNA against claudin-1, or tamoxifen and claudin-1 siRNA. The samples were analyzed by RT-PCR, Western blotting or immunofluorescent staining.
Results
The expression of claudin-1 was upregulated in tamoxifen-treated MCF-7 cells, whereas the expression of claudin-1 was not altered in tamoxifen-treated T47 D cells. Knockdown of claudin-1 by siRNA increased the amount of poly (ADP-ribose) polymerase (PARP) regardless of tamoxifen treatment in MCF-7 cells, but not T47 D cells. In the cell membranes of the MCF-7 cells, tamoxifen treatment increased the amount of claudin-1, but decreased the amount of β-catenin. Claudin-1 siRNA increased the amount of E-cadherin in the cytoplasm of the MCF-7 cells as well as the amount of β-catenin in their cell membranes.
Conclusion
These results indicate that claudin-1 has anti-apoptotic effects, and is involved in the regulation of the expression and subcellular localization of β-catenin and E-cadherin in MCF-7, but not T47 D cells.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference29 articles.
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59: 225-249. 10.3322/caac.20006.
2. Sjöström J, Bergh J: How apoptosis is regulated, and what goes wrong in cancer. BMJ. 2001, 322: 1538-1539. 10.1136/bmj.322.7301.1538. Review,
3. Chang J, Powles TJ, Allred DC, Ashley SE, Makris A, Gregory RK, Osborne CK, Dowsett M: Prediction of clinical outcome from primary tamoxifen by expression of biologic markers in breast cancer patients. Clin Cancer Res. 2000, 6: 616-621.
4. Sutherland RL, Green MD, Hall RE, Reddel RR, Taylor IW: Tamoxifen induces accumulation of MCF 7 human mammary carcinoma cells in the G0/G1 phase of the cell cycle. Eur J Cancer Clin Oncol. 1983, 19: 615-621. 10.1016/0277-5379(83)90177-3.
5. Perry RR, Kang Y, Greaves B: Effects of tamoxifen on growth and apoptosis of estrogen-dependent and -independent human breast cancer cells. Ann Surg Oncol. 1995, 2: 238-245. 10.1007/BF02307030.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献