[18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study
-
Published:2006-03-04
Issue:1
Volume:6
Page:
-
ISSN:1471-2407
-
Container-title:BMC Cancer
-
language:en
-
Short-container-title:BMC Cancer
Author:
Gagel Bernd,Reinartz Patrick,Demirel Cengiz,Kaiser Hans J,Zimny Michael,Piroth Marc,Pinkawa Michael,Stanzel Sven,Asadpour Branka,Hamacher Kurt,Coenen Heinz H,Buell Ulrich,Eble Michael J
Abstract
Abstract
Background
Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early tumour response by ([18F] Fluoromisonidazole (FMISO) and [18F]-2-fluoro-2'-deoxyglucose (FDG) PET.
Methods
Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies were carried out with an ECAT EXACT 922/47® scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting of 2 cycles of gemcitabine (1200 mg/m2) and vinorelbine (30 mg/m2) followed by concurrent radio- (2.0 Gy/d; total dose 66.0 Gy) and chemotherapy with gemcitabine (300–500 mg/m2) every two weeks. FMISO PET and FDG PET were performed in all patients 3 days before and 14 days after finishing chemotherapy.
Results
FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early response to therapy, and in this way, may predict freedom from disease, as well as overall survival.
Conclusion
These preliminary results warrant validation in larger trials. If confirmed, several novel treatment strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference25 articles.
1. Chaiken L, Rege S, Hoh C, Choi Y, Jabour B, Juillard G, Hawkins R, Parker R: Positron emission tomography with fluorodeoxyglucose to evaluate tumour response and control after radiation therapy. Int J Radiat Oncol Biol Phys. 1993, 27: 455-464. 2. Chapman JD, Schneider RF, Urbain JL, Hanks GE: Single-photon emission computed tomography assays for tissue oxygenation. Semin Radiat Oncol. 2001, 11: 47-57. 10.1053/srao.2001.18103. 3. Downey RJ, Akhurst T, Ilson D, Ginsberg R, Bains MS, Gonen M, Koong H, Gollub M, Minsky BD, Zakowski M, Turnbull A, Larson SM, Rusch V: Whole Body 18FDG-PET and the Response of Esophageal Cancer to Induction Therapy: Results of a Prospective Trial. J Clin Oncol. 2003, 21: 428-432. 10.1200/JCO.2003.04.013. 4. Dunst J, Stadler P, Becker A, Lautenschlager C, Pelz T, Hansgen G, Molls M, Kuhnt T: Tumour volume and tumour hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlenther Onkol. 2003, 179: 521-526. 10.1007/s00066-003-1066-4. 5. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, Scheiderbauer J, Machulla HJ, Dittmann H, Vonthein R, Bares R: Prognostic of hypoxia imaging with 18F-Misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005, 46: 253-260.
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|