Author:
Pajonk Frank,van Ophoven Arndt,Weissenberger Christian,McBride William H
Abstract
Abstract
Background
By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition.
Methods
Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay.
Results
Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity.
Conclusion
We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference69 articles.
1. Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, Fina P, Leek R, Morelli L, Palma PD, Harris AL, Barbareschi M: Prognostic value of p21(WAF1) and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res. 1996, 2 (9): 1591-1599.
2. Bonin SR, Pajak TF, Russell AH, Coia LR, Paris KJ, Flam MS, Sauter ER: Overexpression of p53 protein and outcome of patients treated with chemoradiation for carcinoma of the anal canal: a report of randomized trial RTOG 87-04. Radiation Therapy Oncology Group. Cancer. 1999, 85 (6): 1226-1233. 10.1002/(SICI)1097-0142(19990315)85:6<1226::AID-CNCR3>3.0.CO;2-B.
3. Hayakawa K, Mitsuhashi N, Hasegawa M, Saito Y, Sakurai H, Ohno T, Maebayashi K, Ebara T, Hayakawa KY, Niibe H: The prognostic significance of immunohistochemically detected p53 protein expression in non-small cell lung cancer treated with radiation therapy. Anticancer Res. 1998, 18 (5B): 3685-3688.
4. Pomp J, Davelaar J, Blom J, van Krimpen C, Zwinderman A, Quint W, Immerzeel J: Radiotherapy for oesophagus carcinoma: the impact of p53 on treatment outcome. Radiother Oncol. 1998, 46 (2): 179-184. 10.1016/S0167-8140(97)00163-1.
5. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994, 78 (5): 761-771. 10.1016/S0092-8674(94)90462-6.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献