Author:
Macartney-Coxson Donia P,Hood Kylie A,Shi Hong-jun,Ward Teresa,Wiles Anna,O'Connor Rosemary,Hall David A,Lea Rod A,Royds Janice A,Stubbs Richard S,Rooker Serena
Abstract
Abstract
Background
Mortality from colorectal cancer is mainly due to metastatic liver disease. Improved understanding of the molecular events underlying metastasis is crucial for the development of new methods for early detection and treatment of colorectal cancer. Loss of chromosome 8p is frequently seen in colorectal cancer and implicated in later stage disease and metastasis, although a single metastasis suppressor gene has yet to be identified. We therefore examined 8p for genes involved in colorectal cancer progression.
Methods
Loss of heterozygosity analyses were used to map genetic loss in colorectal liver metastases. Candidate genes in the region of loss were investigated in clinical samples from 44 patients, including 6 with matched colon normal, colon tumour and liver metastasis. We investigated gene disruption at the level of DNA, mRNA and protein using a combination of mutation, semi-quantitative real-time PCR, western blotting and immunohistochemical analyses.
Results
We mapped a 2 Mb region of 8p21-22 with loss of heterozygosity in 73% of samples; 8/11 liver metastasis samples had loss which was not present in the corresponding matched primary colon tumour. 13 candidate genes were identified for further analysis. Both up and down-regulation of 8p21-22 gene expression was associated with metastasis. ADAMDEC1 mRNA and protein expression decreased during both tumourigenesis and tumour progression. Increased STC1 and LOXL2 mRNA expression occurred during tumourigenesis. Liver metastases with low DcR1/TNFRSF10C mRNA expression were more likely to present with extrahepatic metastases (p = 0.005). A novel germline truncating mutation of DR5/TNFRSF10B was identified, and DR4/TNFRSF10A SNP rs4872077 was associated with the development of liver metastases (p = 0.02).
Conclusion
Our data confirm that genes on 8p21-22 are dysregulated during colorectal cancer progression. Interestingly, however, instead of harbouring a single candidate colorectal metastasis suppressor 8p21-22 appears to be a hot-spot for tumour progression, encoding at least 13 genes with a putative role in carcinoma development. Thus, we propose that this region of 8p comprises a metastatic susceptibility locus involved in tumour progression whose disruption increases metastatic potential.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference60 articles.
1. Kinzler KW, Vogelstein B: Life (and death) in a malignant tumour. Nature. 1996, 379: 19-20. 10.1038/379019a0.
2. Chung DC: The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology. 2000, 119: 854-865. 10.1053/gast.2000.16507.
3. Yashiro M, Carethers JM, Laghi L, Saito K, Slezak P, Jaramillo E, Rubio C, Koizumi K, Hirakawa K, Boland CR: Genetic pathways in the evolution of morphologically distinct colorectal neoplasms. Cancer Res. 2001, 61: 2676-2683.
4. Cardoso J, Boer J, Morreau H, Fodde R: Expression and genomic profiling of colorectal cancer. Biochim Biophys Acta. 2007, 1775: 103-137.
5. Calvert PM, Frucht H: The genetics of colorectal cancer. Ann Intern Med. 2002, 137: 603-612.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献