In vitro and in vivoanti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

Author:

Luo Qingqiong,Hu Dan,Hu Shuiqing,Yan Ming,Sun Zujun,Chen Fuxiang

Abstract

Abstract Background Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. Methods OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Results Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic cells in vivo, thus inhibiting the growth of OSCC xenografts. Conclusions Our data suggested that metformin could be a potential candidate for the development of new treatment strategies for human OSCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3