Author:
Castro Jessica,Ribó Marc,Navarro Susanna,Nogués Maria Victòria,Vilanova Maria,Benito Antoni
Abstract
Abstract
Background
Ribonucleases are promising agents for use in anticancer therapy. Among the different ribonucleases described to be cytotoxic, a paradigmatic example is onconase which manifests cytotoxic and cytostatic effects, presents synergism with several kinds of anticancer drugs and is currently in phase II/III of its clinical trial as an anticancer drug against different types of cancer. The mechanism of cytotoxicity of PE5, a variant of human pancreatic ribonuclease carrying a nuclear localization signal, has been investigated and compared to that of onconase.
Methods
Cytotoxicity was measured by the MTT method and by the tripan blue exclusion assay. Apoptosis was assessed by flow cytometry, caspase enzymatic detection and confocal microscopy. Cell cycle phase analysis was performed by flow cytometry. The expression of different proteins was analyzed by western blot.
Results
We show that the cytotoxicity of PE5 is produced through apoptosis, that it does not require the proapoptotic activity of p53 and is not prevented by the multiple drug resistance phenotype. We also show that PE5 and onconase induce cell death at the same extent although the latter is also able to arrest the cell growth. We have compared the cytotoxic effects of both ribonucleases in the NCI/ADR-RES cell line by measuring their effects on the cell cycle, on the activation of different caspases and on the expression of different apoptosis- and cell cycle-related proteins. PE5 increases the number of cells in S and G2/M cell cycle phases, which is accompanied by the increased expression of cyclin E and p21WAF1/CIP1 together with the underphosphorylation of p46 forms of JNK. Citotoxicity of onconase in this cell line does not alter the cell cycle phase distribution and it is accompanied by a decreased expression of XIAP
Conclusions
We conclude that PE5 kills the cells through apoptosis associated with the p21WAF1/CIP1 induction and the inactivation of JNK. This mechanism is significantly different from that found for onconase.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference54 articles.
1. Rybak SM, Newton DL: Natural and engineered cytotoxic ribonucleases: therapeutic potential. Exp Cell Res. 1999, 253 (2): 325-335. 10.1006/excr.1999.4718.
2. Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K: Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988, 21 (3): 169-182.
3. Ardelt W, Shogen K, Darzynkiewicz Z: Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol. 2008, 9 (3): 215-225. 10.2174/138920108784567245.
4. Costanzi J, Sidransky D, Navon A, Goldsweig H: Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005, 23 (7): 643-650. 10.1080/07357900500283143.
5. Wu Y, Mikulski SM, Ardelt W, Rybak SM, Youle RJ: A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993, 268 (14): 10686-10693.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献