Author:
Stempfer René,Syed Parvez,Vierlinger Klemens,Pichler Rudolf,Meese Eckart,Leidinger Petra,Ludwig Nicole,Kriegner Albert,Nöhammer Christa,Weinhäusel Andreas
Abstract
Abstract
Background
The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate.
Methods
Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients.
Result
Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly.
Conclusion
Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto-antibody signatures for diagnostic purposes.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference29 articles.
1. Committee on Developing Biomarker-Based Tools for Cancer Screening DaT: Cancer Biomarkers: The Promises and Challenges of Improving Detection and Treatment. 2009, The National Academic Press
2. Li Y, Lee HJ, Corn RM: Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem. 2007, 79: 1082-1088. 10.1021/ac061849m.
3. Ferreira CS, Matthews CS, Missailidis S: DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. 2006, 27: 289-301. 10.1159/000096085.
4. Vicens MC, Sen A, Vanderlaan A, Drake TJ, Tan W: Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. Chembiochem. 2005, 6: 900-907. 10.1002/cbic.200400308.
5. Casiano CA, Mediavilla-Varela M, Tan EM: Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol Cell Proteomics. 2006, 5: 1745-1759. 10.1074/mcp.R600010-MCP200.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献