PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer

Author:

Knostman Katherine AB,McCubrey James A,Morrison Carl D,Zhang Zhaoxia,Capen Charles C,Jhiang Sissy M

Abstract

Abstract Background The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer. Methods NIS expression, subcellular localization, and function were analyzed in MCF-7 human breast cancer cells and MCF-7 cells stably or transiently expressing PI3K p110alpha subunit using Western blot of whole cell lysate, cell surface biotinylation Western blot and immunofluorescence, and radioiodide uptake assay, respectively. NIS localization was determined in a human breast cancer tissue microarray using immunohistochemical staining (IHC) and was correlated with pre-existing pAkt IHC data. Statistical analysis consisted of Student's t-test (in vitro studies) or Fisher's Exact Test (in vivo correlational studies). Results In this study, we demonstrate that PI3K activation in MCF-7 human mammary carcinoma cells leads to expression of underglycosylated NIS lacking cell surface trafficking necessary for iodide uptake ability. PI3K activation also appears to interfere with cell surface trafficking of exogenous NIS as well as all-trans retinoic acid-induced endogenous NIS. A correlation between NIS expression and upregulation of PI3K signaling was found in a human breast cancer tissue microarray. Conclusion Thus, the PI3K pathway likely plays a major role in the discordance between NIS expression and iodide uptake in breast cancer patients. Further study is warranted to realize the application of NIS-mediated radioiodide ablation in breast cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference24 articles.

1. American Cancer Society, Breast Cancer. [http://www.cancer.org]

2. Taurog A: Hormone Synthesis. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text. Edited by: Braverman LL, Utiger RD. 1996, Philadelphia, PA: J.B. Lippincott Co, 47-81. 7

3. Cotran RS, Kumar V, Collins T: The Endocrine System. Robbins Pathologic Basis of Disease. Edited by: Cotran RS, Kumar V, Collins T. 1999, Philadelphia, PA: W.B. Saunders Company, 1142-1147. 6

4. Sherman SI: Thyroid Carcinoma. Lancet. 2003, 361: 501-511. 10.1016/S0140-6736(03)12488-9.

5. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N: The mammary gland iodide symporter is expressed during lactation and in breast cancer. Nat Med. 2000, 6: 871-878. 10.1038/78630.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3