OSU-03012 sensitizes breast cancers to lapatinib-induced cell killing: a role for Nck1 but not Nck2

Author:

West N Winston,Garcia-Vargas Aileen,Chalfant Charles E,Park Margaret A

Abstract

Abstract Background Lapatinib is characterized as an ErbB1/ErbB2 dual inhibitor and has recently been approved for the treatment of metastatic breast cancer. In this study, we examined mechanisms associated with enhancing the activity of lapatinib via combination with other therapies. Methods In the present studies, estrogen receptor (ER) positive and ER negative breast cancer cells were genetically manipulated to up- or downregulate eIF2-alpha, its phospho-mutant, Nck1, or Nck2, then treated with OSU-03012, lapatinib or the combination and assayed for cytotoxicity/cytostaticity using clonogenic assays. Results Treatment of breast cancer cell lines with lapatinib and OSU-03012 (a small molecule derivative of the Cox-2 inhibitor celecoxib) induced synergistic cytotoxic/cytostatic effects. This combination therapy corresponded to an increase in the phosphorylation of eIF2-α at serine51 and a decrease in Nck1 expression. Ectopic expression of phospho-mutant eIF2-α (Ser51Ala) or downregulation of eIF2-α in addition to downregulation of the eIF2-α kinase PERK inhibited the synergistic and cytotoxic effects. Furthermore, ectopic expression of Nck1, but not Nck2 abolished the decrease in cell viability observed in combination-treated cells. Downregulation of Nck1 failed to “rescue” the ablation of the cytotoxic/cytostatic effects by the phospho-mutant of eIF2-α (Ser51Ala) demonstrating that Nck1 downregulation is upstream of eIF2-α phosphorylation in the anti-survival pathway activated by lapatinib and OSU-03012 treatment. Finally, co-immunoprecipitation assays indicated that eIF2-α dissociates from the Nck1/PP1 complex after OSU-03012 and lapatinib co-treatment. Conclusions These data indicate that OSU-03012 and lapatinib co-treatment is an effective combination therapy, which functions to enhance cell killing through the Nck1/eIF2 complex. Hence, this complex is a novel target for the treatment of metastatic breast cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3