Author:
Coumans Frank AW,Siesling Sabine,Terstappen Leon WMM
Abstract
Abstract
Background
To establish a distant metastasis (DM) cells must disseminate from the primary tumor and overcome a series of obstacles, the metastatic cascade. In this study we develop a mathematical model for this cascade to estimate the tumor size and the circulating tumor cell (CTC) load before the first metastasis has formed from a primary breast cancer tumor.
Methods
The metastatic cascade is described in discrete steps: 1. local tumor growth; 2. dissemination into circulation; 3. survival in circulation; 4. extravasation into tissue; and 5. growth into a metastasis. The model was built using data and relationships described in the literature to predict the relationship between tumor size and probability of distant metastasis for 38715 patients with surgically removed TXNXM0 primary breast cancer from the Netherlands Cancer Registry. The model was calibrated using primary tumor size, probability of distant metastasis and time to distant metastasis for 1489 patients with stage T1BNXM0 (25% of total patients with T1BNXM0). Validation of the model was done with data for all patients.
Results
From the time to distant metastasis of these 38715 breast cancer patients, we determined a tumor doubling time of 1.7 ± 0.9 months. Fitting the data for 25% of T1B patients estimates a metastatic efficiency of 1 metastasis formed per 60 million disseminated tumor cells. Validation of the model to data of patients in all T-stages shows good agreement between model and epidemiological data. To reduce the 5-year risk of distant metastasis for TXNXM0 from 9.2% to 1.0%, the primary tumor needs to be detected and removed before it reaches a diameter of 2.7 ± 1.6 mm. At this size, the model predicts that there will be 9 ± 6 CTC/L blood.
Conclusions
To reduce the rate of distant metastasis in surgically treated TXNXM0 breast cancer to 1%, imaging technology will need to be able to detect lesions of 2.7 mm in diameter or smaller. Before CTC detection can be applied in the early disease setting, sensitivity will need to be improved by at least 15-fold and combined with technology that minimizes false positives.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference69 articles.
1. Minn AJ, Massagué J: Invasion and metastasis. 2008, Philadelphia: Lippincott, 8
2. Klein CA: Cancer. The metastasis cascade. Science. 2008, 321 (5897): 1785-1787. 10.1126/science.1164853.
3. Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer. 2004, 4 (6): 448-456. 10.1038/nrc1370.
4. Woodhouse EC, Chuaqui RF, Liotta LA: General mechanisms of metastasis. Ann Ny Acad Sci. 1997, 80 (8 Suppl): 1529-1537.
5. Fidler IJ: Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother Pharmacol. 1999, 43 (Suppl): S3-S10.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献