Author:
Kaul-Ghanekar Ruchika,Singh Sandeep,Mamgain Hitesh,Jalota-Badhwar Archana,Paknikar Kishore M,Chattopadhyay Samit
Abstract
Abstract
Background
Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections.
Methods
We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies.
Results
Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins.
Conclusion
Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation marker between cancerous and non-cancerous cells.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference60 articles.
1. Papanicolaou GN, Traut HF: The diagnostic value of vaginal smears in carcinoma of the uterus. Arch Pathol Lab Med. 1997, 121: 211-224.
2. Lange F-de, Cambi A, Huijbens R, Bakker B-de, Rensen W: Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science. 2001, 114: 4153-4160.
3. Hamby L: Gene expression patterns and breast cancer. Cancer Genetics News Spring. 2002, 4: 1-
4. Hell SW: Toward fluorescence nanoscopy. Nat Biotechnol. 2003, 21: 1347-1355. 10.1038/nbt895.
5. Pawley JB: Handbook of Biological Confocal Microscopy. 1995, New York, Plenum Press
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献