Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

Author:

Kaul-Ghanekar Ruchika,Singh Sandeep,Mamgain Hitesh,Jalota-Badhwar Archana,Paknikar Kishore M,Chattopadhyay Samit

Abstract

Abstract Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation marker between cancerous and non-cancerous cells.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference60 articles.

1. Papanicolaou GN, Traut HF: The diagnostic value of vaginal smears in carcinoma of the uterus. Arch Pathol Lab Med. 1997, 121: 211-224.

2. Lange F-de, Cambi A, Huijbens R, Bakker B-de, Rensen W: Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science. 2001, 114: 4153-4160.

3. Hamby L: Gene expression patterns and breast cancer. Cancer Genetics News Spring. 2002, 4: 1-

4. Hell SW: Toward fluorescence nanoscopy. Nat Biotechnol. 2003, 21: 1347-1355. 10.1038/nbt895.

5. Pawley JB: Handbook of Biological Confocal Microscopy. 1995, New York, Plenum Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3