Author:
Novak David J,Chen Long Qi,Ghadirian Parviz,Hamel Nancy,Zhang Phil,Rossiny Vanessa,Cardinal Guy,Robidoux André,Tonin Patricia N,Rousseau Francois,Narod Steven A,Foulkes William D
Abstract
Abstract
Background
BRCA1 and BRCA2 account for the majority of the known familial breast cancer risk, however, the impact of other cancer susceptibility genes largely remains to be elucidated. Checkpoint Kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage, whose defects have been associated with an increase in breast cancer risk. Previous studies have identified low penetrance CHEK2 alleles such as 1100delC and I157T, as well as variants such as S428F in the Ashkenazi Jewish population and IVS2 + 1G>A in the Polish population. No founder allele has been specifically identified in the French Canadian population.
Methods
The 14 coding exons of CHEK2 were fully sequenced for variant alleles in a panel of 25 affected French Canadian women and 25 healthy controls. Two variants were identified of which one novel variant was further screened for in an additional panel of 667 breast cancer patients and 6548 healthy controls. Additional genotyping was conducted using allele specific PCR and a restriction digest assay. Significance of amino acid substitutions were deduced by employing comparative analysis techniques.
Results
Two variants were identified: the previously reported silent substitution 252A>G (E84E) and the novel missense variant, 1217G>A (R406H). No significant difference in allele distribution between French Canadian women with breast cancer and healthy controls was observed (3/692, 0.43% vs. 22/6573, 0.33%, respectively, P = 0.73).
Conclusion
The novel CHEK2 missense variant identified in this study, R406H, is unlikely to contribute to breast cancer risk in French Canadian women.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference39 articles.
1. Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. Ca-A Cancer Journal for Clinicians. 2005, 55: 74-108.
2. Brody LC: CHEKs and balances: accounting for breast cancer. Nature Genetics. 2002, 31: 3-4. 10.1038/ng0502-3.
3. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M, .: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998, 62: 676-689. 10.1086/301749.
4. Chehab NH, Malikzay A, Appel M, Halazonetis TD: Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes & Development. 2000, 14: 278-288.
5. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH: hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000, 404: 201-204. 10.1038/35004614.