Author:
Looby Eileen,Abdel-Latif Mohamed MM,Athié-Morales Veronica,Duggan Shane,Long Aideen,Kelleher Dermot
Abstract
Abstract
Background
The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells.
Methods
Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay.
Results
DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure.
Conclusion
DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference63 articles.
1. Carlier H, Labussiere H, Bernard A, Hugon JS: Lipid esterification and secretion by the mouse intestine in organ culture. Comp Biochem Physiol. 1986, 84: 303-308. 10.1016/0300-9629(86)90619-5.
2. Holt PR: The roles of bile acids during the process of normal fat and cholesterol absorption. Arch Intern Med. 1972, 130: 574-583. 10.1001/archinte.130.4.574.
3. Woutersen RA, Appel MJ, van Garderen-Hoetmer A, Wijnands MV: Dietary fat and carcinogenesis. Mutat Res. 1999, 443: 111-127.
4. Mastromarino AJ, Reddy BS, Wynder EL: Fecal profiles of anaerobic microflora of large bowel cancer patients and patients with nonhereditary large bowel polyps. Cancer Res. 1978, 38: 4458-4462.
5. Nagengast FM, Grubben MJ, van Munster IP: Role of bile acids in colorectal carcinogenesis. Eur J Cancer. 1995, 31A: 1067-1070. 10.1016/0959-8049(95)00216-6.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献