Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein
-
Published:2006-03-16
Issue:1
Volume:6
Page:
-
ISSN:1471-2407
-
Container-title:BMC Cancer
-
language:en
-
Short-container-title:BMC Cancer
Author:
Pawlik Timothy M,Hawke David H,Liu Yanna,Krishnamurthy Savitri,Fritsche Herbert,Hunt Kelly K,Kuerer Henry M
Abstract
Abstract
Background
Isotope-coded affinity tag (ICAT) tandem mass spectrometry (MS) allows for qualitative and quantitative analysis of paired protein samples. We sought to determine whether ICAT technology could quantify and identify differential expression of tumor-specific proteins in nipple aspirate fluid (NAF) from the tumor-bearing and contralateral disease-free breasts of patients with unilateral early-stage breast cancer.
Methods
Paired NAF samples from 18 women with stage I or II unilateral invasive breast carcinoma and 4 healthy volunteers were analyzed using ICAT labeling, sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), liquid chromatography, and MS. Proteins were identified by sequence database analysis. Western blot analysis of NAF from an independent sample set from 12 women (8 with early-stage breast cancer and 4 healthy volunteers) was also performed.
Results
353 peptides were identified from tandem mass spectra and matched to peptide sequences in the National Center for Biotechnology Information database. Equal numbers of peptides were up- versus down-regulated. Alpha2HS-glycoprotein [Heavy:Light (H:L) ratio 0.63] was underexpressed in NAF from tumor-bearing breasts, while lipophilin B (H:L ratio 1.42), beta-globin (H:L ratio 1.98), hemopexin (H:L ratio 1.73), and vitamin D-binding protein precursor (H:L ratio 1.82) were overexpressed. Western blot analysis of pooled samples of NAF from healthy volunteers versus NAF from women with breast cancer confirmed the overexpression of vitamin D-binding protein in tumor-bearing breasts.
Conclusion
ICAT tandem MS was able to identify and quantify differences in specific protein expression between NAF samples from tumor-bearing and disease-free breasts. Proteomic screening techniques using ICAT and NAF may be used to find markers for diagnosis of breast cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference59 articles.
1. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW: Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med. 1998, 338: 1089-1096. 2. Harris JR, Lippman ME, Veronesi U, Willett W: Breast cancer (1). N Engl J Med. 1992, 327: 319-328. 3. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002, 359: 572-577. 4. Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R, Wallwiener D, Merino MJ, Petricoin EF, Zhao Y, Steeg PS: Proteomics of human breast ductal carcinoma in situ. Cancer Res. 2002, 62: 6740-6749. 5. Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, George A, Katenhusen R, Buchowiecka A, Arciero C, Brzeski H, Hooke J, Shriver C: High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003, 3: 1863-1873.
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|