Author:
Ueda Shigeto,Nakamiya Noriko,Matsuura Kazuo,Shigekawa Takashi,Sano Hiroshi,Hirokawa Eiko,Shimada Hiroko,Suzuki Hiroaki,Oda Motoki,Yamashita Yutaka,Kishino Osamu,Kuji Ichiei,Osaki Akihiko,Saeki Toshiaki
Abstract
Abstract
Background
Near-infrared optical imaging targeting the intrinsic contrast of tissue hemoglobin has emerged as a promising approach for visualization of vascularity in cancer research. We evaluated the usefulness of diffuse optical spectroscopy using time-resolved spectroscopic (TRS) measurements for functional imaging of primary breast cancer.
Methods
Fifty-five consecutive TNM stageI/II patients with histologically proven invasive ductal carcinoma and operable breast tumors (<5 cm) who underwent TRS measurements were enrolled. Thirty (54.5%) patients underwent 18F-fluoro-deoxy-glucose (FDG) positron emission tomography with measurement of maximum tumor uptake. TRS was used to obtain oxyhemoglobin, deoxyhemoglobin, and total hemoglobin (tHb) levels from the lesions, surrounding normal tissue, and contralateral normal tissue. Lesions with tHb levels 20% higher than those present in normal tissue were defined as “hotspots,” while others were considered “uniform.” The findings in either tumor type were compared with clinicopathological factors.
Results
“Hotspot” tumors were significantly larger (P = 0.002) and exhibited significantly more advanced TNM stage (P = 0.01), higher mitotic counts (P = 0.01) and higher levels of FDG uptake (P = 0.0004) compared with “uniform” tumors; however, other pathological variables were not significantly different between the two groups.
Conclusions
Optical imaging for determination of tHb levels allowed for measurement of tumor vascularity as a function of proliferation and glucose metabolism, which may be useful for prediction of patient prognosis and potential response to treatment.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference31 articles.
1. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971, 285: 1182-1186. 10.1056/NEJM197111182852108.
2. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997, 57: 963-969.
3. Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.
4. Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE: Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008, 35: 2443-2451. 10.1118/1.2919078.
5. Ueda Y, Yoshimoto K, Ohmae E, Suzuki T, Yamanaka T, Yamashita D, Ogura H, Teruya C, Nasu H, Ima E, Sakahara H, Oda M, Yamashita Y: Time-resolved optical mammography and its preliminary clinical results. Technol Cancer Res Treat. 2011, 10: 393-401.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献