Author:
Snyder Cynthia S,Kaushal Sharmeela,Kono Yuko,Tran Cao Hop S,Hoffman Robert M,Bouvet Michael
Abstract
Abstract
Background
Pancreatic cancer is a devastating disease characterized by dismal 5-year survival rates and limited treatment options. In an effort to provide useful models for preclinical evaluation of new experimental therapeutics, we and others have developed orthotopic mouse models of pancreatic cancer. The utility of these models for pre-clinical testing is dependent upon quantitative, noninvasive methods for monitoring in vivo tumor progression in real time. Toward this goal, we performed whole-body fluorescence imaging and ultrasound imaging to evaluate and to compare these noninvasive imaging modalities for assessing tumor burden and tumor progression in an orthotopic mouse model of pancreatic cancer.
Methods
The human pancreatic cancer cell line XPA-1, engineered for stable, high-level expression of red fluorescent protein (RFP), was implanted into the pancreas of nude mice using orthotopic implantation. The tumors were allowed to grow over a period of one to several weeks during which time the mice were imaged using both fluorescence imaging and ultrasound imaging to measure tumor burden and to monitor tumor growth.
Results
Whole-body fluorescence imaging and ultrasound imaging both allowed for the visualization and measurement of orthotopic pancreatic tumor implants in vivo. The imaging sessions were well-tolerated by the mice and yielded data which correlated well in the quantitative assessment of tumor burden. Whole-body fluorescence and two-dimensional ultrasound imaging showed a strong correlation for measurement of tumor size over a range of tumor sizes (R2 = 0.6627, P = 0.003 for an exposure time of 67 msec and R2 = 0.6553, P = 0.003 for an exposure time of 120 msec).
Conclusion
Our findings suggest a complementary role for fluorescence imaging and ultrasound imaging in assessing tumor burden and tumor progression in orthotopic mouse models of human cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference14 articles.
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 2008, 58 (2): 71-96. 10.3322/CA.2007.0010.
2. Fu X, Guadagni F, Hoffman RM: A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA. 1992, 89 (12): 5645-5649. 10.1073/pnas.89.12.5645.
3. Bouvet M, Wang J, Nardin SR, Nassirpour R, Yang M, Baranov E, Jiang P, Moossa AR, Hoffman RM: Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res. 2002, 62 (5): 1534-1540.
4. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ: In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia. 1999, 1 (1): 50-62. 10.1038/sj.neo.7900005.
5. Katz MH, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M: A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res. 2003, 113 (1): 151-160. 10.1016/S0022-4804(03)00234-8.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献