Molecular mechanism of the schedule-dependent synergistic interaction in EGFR-mutant non-small cell lung cancer cell lines treated with paclitaxel and gefitinib

Author:

Cheng Hua,An She-Juan,Dong Song,Zhang Yi-Fang,Zhang Xu-Chao,Chen Zhi-Hong,Jian-Su ,Wu Yi-Long

Abstract

Abstract Background Chemotherapy combined concurrently with TKIs produced a negative interaction and failed to improve survival when compared with chemotherapy or TKIs alone in the treatment of non-small cell lung cancer (NSCLC). The present study investigated the sequence-dependent interaction between paclitaxel and gefitinib and clarified the underlying mechanism. Methods The effects on cell proliferation, EGFR signaling pathway, and TGFα expression were evaluated in a panel of human NSCLC cell lines harboring EGFR mutations with three different combination sequences: sequential treatment with paclitaxel followed by gefitinib (T→G), sequential treatment with gefitinib followed by paclitaxel (G→T), or concomitant treatment (T + G). Results The sequence-dependent anti-proliferative effects differed between EGFR-TKI-sensitive and -resistant cell lines carrying EGFR mutations. A synergistic anti-proliferative activity was obtained with paclitaxel treatment followed by gefitinib in all cell lines, with mean CI values of 0.63 in Hcc827, 0.54 in PC-9, 0.81 in PC-9/GR, and 0.77 in H1650 cells for the T→G sequence. The mean CI values for the G→T sequence were 1.29 in Hcc827, 1.16 in PC-9, 1.52 in PC-9/GR, and 1.5 in H1650 cells. The mean CI values for T+G concomitant treatment were 0.88 in Hcc827, 0.91 in PC-9, 1.05 in PC-9/GR, and 1.18 in H1650 cells. Paclitaxel produced a dose-dependent increase in EGFR phosphorylation. Paclitaxel significantly increased EGFR phosphorylation compared with that in untreated controls (mean differences: +50% in Hcc827, + 56% in PC-9, + 39% in PC-9/GR, and + 69% in H1650 cells; p < 0.05). The T→G sequence produced significantly greater inhibition of EGFR phosphorylation compared with the opposite sequence (mean differences: -58% in Hcc827, -38% in PC-9, -35% in PC-9/GR, and -30% in H1650 cells; p < 0.05). Addition of a neutralizing anti-TGFα antibody abolished paclitaxel-induced activation of the EGFR pathway in PC-9 and H1650 cells. Sequence-dependent TGFα expression and release are responsible for the sequence-dependent EGFR pathway modulation. Conclusion The data suggest that the sequence of paclitaxel followed by gefitinib is an appropriate treatment combination for NSCLC cell lines harboring EGFR mutations. Our results provide molecular evidence to support clinical treatment strategies for patients with lung cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3