Author:
Pyo Paul,Louie Brandon,Rajamahanty Srinivas,Choudhury Muhammad,Konno Sensuke
Abstract
Abstract
Background
Prostate cancer remains the most common malignancy among elderly men and the second leading cause of cancer death in the United States. Although several conventional therapies are currently available, they have a low efficacy and the more effective treatment modalities need to be established. Interferons (IFNs) are one of such options known as immunotherapy and demonstrated their antitumor effects on certain cancer types. Yet such antitumor activity should be improved or potentiated to have the satisfactory outcomes. In fact, combination therapy has been proposed as an alternative approach and is being underway in human and animal studies. Accordingly, we studied whether the combination of IFN-α and D-fraction (PDF), a bioactive mushroom extract, might potentiate anticancer activity of IFN-α in prostate cancer PC-3 cells in vitro.
Results
Potential effects of recombinant IFN-α2b (0–100,000 IU/ml), PDF (0–1,000 μg/ml), or their combinations were assessed on the growth of PC-3 cells at 72 h. Cell cycle analysis using a flow cytometer and Western blot analysis were performed to explore antiproliferative mechanism of these agents. The dose-dependent study showed that IFN-α2b up to 20,000 (20 K) IU/ml had no significant effects, but >60% growth reduction was attained ≤50 K IU/ml. Similarly, PDF showed no effects up to 250 μg/ml but ~65% growth reduction was seen at 1,000 μg/ml. When IFN-α2b and PDF were combined, a relatively low concentration (10 K IU/ml) of IFN-α2b and PDF (250 μg/ml) resulted in a ~65% growth reduction. This was accompanied by a G1 cell cycle arrest, indicated by cell cycle analysis. Western blots also revealed that the G1-specific cell cycle regulators, CDK2, CDK4, CDK6, cyclin D1, and cyclin E, had been significantly (>60%) down-regulated in IFN/PDF-treated cells.
Conclusion
The combination of IFN-α2b (10 K IU/ml) and PDF (250 μg/ml) is capable of inducing a ~65% reduction in PC-3 cell growth. This appears to be due to a synergistic potentiation of two agents, leading to a G1 cell cycle arrest. Thus, it is conceivable that PDF may potentiate IFN-α2b activity, improving immunotherapy for prostate cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Biology,Hematology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献