Histone deacetylase inhibitor potentiated the ability of MTOR inhibitor to induce autophagic cell death in Burkitt leukemia/lymphoma

Author:

Dong Li Hua,Cheng Shu,Zheng Zhong,Wang Li,Shen Yang,Shen Zhi Xiang,Chen Sai Juan,Zhao Wei Li

Abstract

Abstract Background Burkitt leukemia/lymphoma is a major subtype of aggressive B-cell lymphoma. Biological targeted therapies on this disease need to be further investigated and may help to improve the clinical outcome of the patients. Methods This study examined the anti-tumor activity of the histone deacetylases (HDAC) inhibitor valproic acid (VPA) combined with the mammalian target of rapamycin (MTOR) inhibitor temsirolimus in Burkitt leukemia/lymphoma cell lines, as well as in primary tumor cells and a murine xenograft model. Results Co-treatment of VPA and temsirolimus synergistically inhibited the tumor cell growth and triggered the autophagic cell death, with a significant inhibition of MTOR signaling and MYC oncoprotein. Functioned as a class I HDAC inhibitor, VPA potentiated the effect of temsirolimus on autophagy through inhibiting HDAC1. Molecular silencing of HDAC1 using small interfering RNA (siRNA) attenuated VPA-mediated regulation of CDKN1A, CDKN1B and LC3-I/II, regression of tumor cell growth and induction of autophagy. Meanwhile, VPA counteracted temsirolimus-induced AKT activation via HDAC3 inhibition. HDAC3 siRNA abrogated the ability of VPA to modulate AKT phosphorylation, to suppress tumor cell growth and to induce autophagy. Strong antitumor effect was also observed on primary tumor cells while sparing normal hematopoiesis ex vivo. In a murine xenograft model established with subcutaneous injection of Namalwa cells, dual treatment efficiently blocked tumor growth, inhibited MYC and induced in situ autophagy. Conclusions These findings confirmed the synergistic effect of the HDAC and MTOR inhibitors on Burkitt leukemia/lymphoma, and provided an insight into clinical application of targeting autophagy in treating MYC-associated lymphoid malignancies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Biology,Hematology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3