Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer

Author:

Liu Wenci,Chen Wubiao,Xia Jun,Lu Zhendong,Fu Youwen,Li Yuange,Tan Zhi

Abstract

Abstract Background The relationship between the biological pathways related to deep learning radiomics (DLR) and lymph node metastasis (LNM) of breast cancer is still poorly understood. This study explored the value of DLR based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in LNM of invasive breast cancer. It also analyzed the biological significance of DLR phenotype based on genomics. Methods Two cohorts from the Cancer Imaging Archive project were used, one as the training cohort (TCGA-Breast, n = 88) and one as the validation cohort (Breast-MRI-NACT Pilot, n = 57). Radiomics and deep learning features were extracted from preoperative DCE-MRI. After dual selection by principal components analysis (PCA) and relief methods, radiomics and deep learning models for predicting LNM were constructed by the random forest (RF) method. A post-fusion strategy was used to construct the DLR nomograms (DLRNs) for predicting LNM. The performance of the models was evaluated using the receiver operating characteristic (ROC) curve and Delong test. In the training cohort, transcriptome data were downloaded from the UCSC Xena online database, and biological pathways related to the DLR phenotypes were identified. Finally, hub genes were identified to obtain DLR gene expression (RadDeepGene) scores. Results DLRNs were based on area under curve (AUC) evaluation (training cohort, AUC = 0.98; validation cohort, AUC = 0.87), which were higher than single radiomics models or GoogLeNet models. The Delong test (radiomics model, P = 0.04; GoogLeNet model, P = 0.01) also validated the above results in the training cohorts, but they were not statistically significant in the validation cohort. The GoogLeNet phenotypes were related to multiple classical tumor signaling pathways, characterizing the biological significance of immune response, signal transduction, and cell death. In all, 20 genes related to GoogLeNet phenotypes were identified, and the RadDeepGene score represented a high risk of LNM (odd ratio = 164.00, P < 0.001). Conclusions DLRNs combining radiomics and deep learning features of DCE-MRI images improved the preoperative prediction of LNM in breast cancer, and the potential biological characteristics of DLRN were identified through genomics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3