Dynamic contrast-enhanced MR imaging in identifying active anal fistula after surgery

Author:

Lu Weiping,Li Xiaoyan,Liang Wenwen,Chen Kai,Cao Xinyue,Zhou Xiaowen,Wang Ying,Huang Bingcang

Abstract

Abstract Background It is challenging to identify residual or recurrent fistulas from the surgical region, while MR imaging is feasible. The aim was to use dynamic contrast-enhanced MR imaging (DCE-MRI) technology to distinguish between active anal fistula and postoperative healing (granulation) tissue. Methods Thirty-six patients following idiopathic anal fistula underwent DCE-MRI. Subjects were divided into Group I (active fistula) and Group IV (postoperative healing tissue), with the latter divided into Group II (≤ 75 days) and Group III (> 75 days) according to the 75-day interval from surgery to postoperative MRI reexamination. MRI classification and quantitative analysis were performed. Correlation between postoperative time intervals and parameters was analyzed. The difference of parameters between the four groups was analyzed, and diagnostic efficiency was tested by receiver operating characteristic curve. Results Wash-in rate (WI) and peak enhancement intensity (PEI) were significantly higher in Group I than in Group II (p = 0.003, p = 0.040), while wash-out rate (WO), time to peak (TTP), and normalized signal intensity (NSI) were opposite (p = 0.031, p = 0.007, p = 0.010). Area under curves for discriminating active fistula from healing tissue within 75 days were 0.810 in WI, 0.708 in PEI, 0.719 in WO, 0.783 in TTP, 0.779 in NSI. All MRI parameters were significantly different between Group I and Group IV, but not between Group II and Group III, and not related to time intervals. Conclusion In early postoperative period, DCE-MRI can be used to identify active anal fistula in the surgical area. Trial registration Chinese Clinical Trial Registry: ChiCTR2000033072.

Funder

Shanghai Pudong New Area Health Commission

Special Project of Clinical Research in Health Industry of Shanghai Municipal Commission

Discipline Construction of Pudong New Area Health Commission

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3