Ultrasound-based deep learning radiomics model for differentiating benign, borderline, and malignant ovarian tumours: a multi-class classification exploratory study

Author:

Du Yangchun,Guo Wenwen,Xiao Yanju,Chen Haining,Yao Jinxiu,Wu Ji

Abstract

Abstract Background Accurate preoperative identification of ovarian tumour subtypes is imperative for patients as it enables physicians to custom-tailor precise and individualized management strategies. So, we have developed an ultrasound (US)-based multiclass prediction algorithm for differentiating between benign, borderline, and malignant ovarian tumours. Methods We randomised data from 849 patients with ovarian tumours into training and testing sets in a ratio of 8:2. The regions of interest on the US images were segmented and handcrafted radiomics features were extracted and screened. We applied the one-versus-rest method in multiclass classification. We inputted the best features into machine learning (ML) models and constructed a radiomic signature (Rad_Sig). US images of the maximum trimmed ovarian tumour sections were inputted into a pre-trained convolutional neural network (CNN) model. After internal enhancement and complex algorithms, each sample’s predicted probability, known as the deep transfer learning signature (DTL_Sig), was generated. Clinical baseline data were analysed. Statistically significant clinical parameters and US semantic features in the training set were used to construct clinical signatures (Clinic_Sig). The prediction results of Rad_Sig, DTL_Sig, and Clinic_Sig for each sample were fused as new feature sets, to build the combined model, namely, the deep learning radiomic signature (DLR_Sig). We used the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) to estimate the performance of the multiclass classification model. Results The training set included 440 benign, 44 borderline, and 196 malignant ovarian tumours. The testing set included 109 benign, 11 borderline, and 49 malignant ovarian tumours. DLR_Sig three-class prediction model had the best overall and class-specific classification performance, with micro- and macro-average AUC of 0.90 and 0.84, respectively, on the testing set. Categories of identification AUC were 0.84, 0.85, and 0.83 for benign, borderline, and malignant ovarian tumours, respectively. In the confusion matrix, the classifier models of Clinic_Sig and Rad_Sig could not recognise borderline ovarian tumours. However, the proportions of borderline and malignant ovarian tumours identified by DLR_Sig were the highest at 54.55% and 63.27%, respectively. Conclusions The three-class prediction model of US-based DLR_Sig can discriminate between benign, borderline, and malignant ovarian tumours. Therefore, it may guide clinicians in determining the differential management of patients with ovarian tumours.

Funder

The Guangxi Promotion of Appropriate Health Technologies Project

The Natural Science Foundation of Guangxi Zhuang Autonomous Region

The Guangxi Medical”139” Project for Training High-level Backbone Talents

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3