“A net for everyone”: fully personalized and unsupervised neural networks trained with longitudinal data from a single patient

Author:

Strack Christian,Pomykala Kelsey L.,Schlemmer Heinz-Peter,Egger Jan,Kleesiek Jens

Abstract

Abstract Background With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in longitudinal datasets. Methods Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. We trained a neural network for each patient using just two scans from different timepoints to map the difference between the images. The change in tumor volume can be calculated with this map. The neural networks were a form of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, no additional training data, pre-training of the networks or any (manual) annotations are necessary. Results The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. Conclusions We show a novel approach to deep learning in using data from just one patient to train deep neural networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to generalize the method.

Funder

Universitätsklinikum Essen

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3