Changes in radiomic and radiologic features in meningiomas after radiation therapy

Author:

Jo Sang Won,Kim Eun Soo,Yoon Dae Young,Kwon Mi Jung

Abstract

Abstract Objectives This study evaluated the radiologic and radiomic features extracted from magnetic resonance imaging (MRI) in meningioma after radiation therapy and investigated the impact of radiation therapy in treating meningioma based on routine brain MRI. Methods Observation (n = 100) and radiation therapy (n = 62) patients with meningioma who underwent MRI were randomly divided (7:3 ratio) into training (n = 118) and validation (n = 44) groups. Radiologic findings were analyzed. Radiomic features (filter types: original, square, logarithm, exponential, wavelet; feature types: first order, texture, shape) were extracted from the MRI. The most significant radiomic features were selected and applied to quantify the imaging phenotype using random forest machine learning algorithms. Area under the curve (AUC), sensitivity, and specificity for predicting both the training and validation sets were computed with multiple-hypothesis correction. Results The radiologic difference in the maximum area and diameter of meningiomas between two groups was statistically significant. The tumor decreased in the treatment group. A total of 241 series and 1691 radiomic features were extracted from the training set. In univariate analysis, 24 radiomic features were significantly different (P < 0.05) between both groups. Best subsets were one original, three first-order, and six wavelet-based features, with an AUC of 0.87, showing significant differences (P < 0.05) in multivariate analysis. When applying the model, AUC was 0.76 and 0.79 for the training and validation set, respectively. Conclusion In meningioma cases, better size reduction can be expected after radiation treatment. The radiomic model using MRI showed significant changes in radiomic features after radiation treatment.

Funder

the National Research Foundation of Korea (NRF) grant funded by the Korea governmen

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3