Multimodal Biomedical Image Segmentation using Multi-Dimensional U-Convolutional Neural Network

Author:

Srinivasan Saravanan,Durairaju Kirubha,Deeba K.,Mathivanan Sandeep Kumar,Karthikeyan P.,Shah Mohd Asif

Abstract

AbstractDeep learning recently achieved advancement in the segmentation of medical images. In this regard, U-Net is the most predominant deep neural network, and its architecture is the most prevalent in the medical imaging society. Experiments conducted on difficult datasets directed us to the conclusion that the traditional U-Net framework appears to be deficient in certain respects, despite its overall excellence in segmenting multimodal medical images. Therefore, we propose several modifications to the existing cutting-edge U-Net model. The technical approach involves applying a Multi-Dimensional U-Convolutional Neural Network to achieve accurate segmentation of multimodal biomedical images, enhancing precision and comprehensiveness in identifying and analyzing structures across diverse imaging modalities. As a result of the enhancements, we propose a novel framework called Multi-Dimensional U-Convolutional Neural Network (MDU-CNN) as a potential successor to the U-Net framework. On a large set of multimodal medical images, we compared our proposed framework, MDU-CNN, to the classical U-Net. There have been small changes in the case of perfect images, and a huge improvement is obtained in the case of difficult images. We tested our model on five distinct datasets, each of which presented unique challenges, and found that it has obtained a better performance of 1.32%, 5.19%, 4.50%, 10.23% and 0.87%, respectively.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Ashraf H, Waris A, Ghafoor MF, Gilani SO, Niazi IK. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields. Sci Rep. 2022;12(3948):1–16.

2. Seeja RD, Suresh A. Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (SVM). Asian Pac J Cancer Prev. 2019;20:1555–61.

3. Zhao H, Wang A, Zhang C. Research on melanoma image segmentation by incorporating medical prior knowledge. PeerJ Comput Sci. 2022;8:1–15.

4. Kaur R, GholamHosseini H, Sinha R, Lindén M. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images. BMC Med Imaging. 2022;22(103):1–13.

5. Ahmed N, Tan X, Ma L. A new method proposed to Melanoma-skin cancer lesion detection and segmentation based on hybrid convolutional neural network. Multimedia Tools Appl. 2022. https://doi.org/10.1007/s11042-022-13618-0.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3