CT differentiation of the oncocytoma and renal cell carcinoma based on peripheral tumor parenchyma and central hypodense area characterisation

Author:

Qu Jianyi,Zhang Qianqian,Song Xinhong,Jiang Hong,Ma Heng,Li Wenhua,Wang Xiaofei

Abstract

Abstract Background Although the central scar is an essential imaging characteristic of renal oncocytoma (RO), its utility in distinguishing RO from renal cell carcinoma (RCC) has not been well explored. The study aimed to evaluate whether the combination of CT characteristics of the peripheral tumor parenchyma (PTP) and central hypodense area (CHA) can differentiate typical RO with CHA from RCC. Methods A total of 132 tumors on the initial dataset were retrospectively evaluated using four-phase CT. The excretory phases were performed more than 20 min after the contrast injection. In corticomedullary phase (CMP) images, all tumors had CHAs. These tumors were categorized into RO (n = 23), clear cell RCC (ccRCC) (n = 85), and non-ccRCC (n = 24) groups. The differences in these qualitative and quantitative CT features of CHA and PTP between ROs and ccRCCs/non-ccRCCs were statistically examined. Logistic regression filters the main factors for separating ROs from ccRCCs/non-ccRCCs. The prediction models omitting and incorporating CHA features were constructed and evaluated, respectively. The effectiveness of the prediction models including CHA characteristics was then confirmed through a validation dataset (8 ROs, 35 ccRCCs, and 10 non-ccRCCs). Results The findings indicate that for differentiating ROs from ccRCCs and non-ccRCCs, prediction models with CHA characteristics surpassed models without CHA, with the corresponding areas under the curve (AUC) being 0.962 and 0.914 versus 0.952 and 0.839 respectively. In the prediction models that included CHA parameters, the relative enhancement ratio (RER) in CMP and enhancement inversion, as well as RER in nephrographic phase and enhancement inversion were the primary drivers for differentiating ROs from ccRCCs and non-ccRCCs, respectively. The prediction models with CHA characteristics had the comparable diagnostic ability on the validation dataset, with respective AUC values of 0.936 and 0.938 for differentiating ROs from ccRCCs and non-ccRCCs. Conclusion The prediction models with CHA characteristics can help better differentiate typical ROs from RCCs. When a mass with CHA is discovered, particularly if RO is suspected, EP images with longer delay scanning periods should be acquired to evaluate the enhancement inversion characteristics of CHA.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3