Stiffness in breast masses with posterior acoustic shadowing: significance of ultrasound real time shear wave elastography

Author:

Luo Hui,Li Jian,Shi Yang,Xiao Xiaojun,Wang Yuanyang,Wei Zhanghong,Xu Jinfeng

Abstract

Abstract Background To assess the stiffness of benign breast masses in ultrasound images with posterior acoustic shadowing (PAS) and malignant lesions, and explore the significance of differential diagnosis using ultrasound real time shear wave elastography. Material and methods All 117 mammary masses (98 patients) with PAS were assessed by using routine ultrasound examination, and elastic modulus values were obtained with the real time shear wave elastography mode. All breast lesions were confirmed by surgery or biopsy. The significance of differences in ultrasound elastography values between breast benign and malignant masses with posterior acoustic shadowing was assessed, and the ROC curves of elasticity modulus values were analyzed. Results Among the 117 masses, 72 were benign and 45 were malignant. The two types of breast masses showed significant differences in size, margin, internal echo, calcification, and blood flow characteristics (P < 0.05), although the difference in orientation was not significant (P > 0.05). Emean, Emax and Esd obtained with real time shear wave elastography showed statistically significant differences between benign masses with posterior acoustic shadowing and breast cancer (P < 0.05), while Emin showed no significant difference between them (P = 0.633). Ultrasound real time shear wave elastography showed higher sensitivity and specificity than conventional ultrasound. Conclusions Benign and malignant breast masses with PAS show different ultrasound manifestations. Real time shear wave elastography can facilitate the differential diagnosis and treatment planning for these breast masses.

Funder

Sanming Cultivation Project of Medicine in Shenzhen

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3