Development and performance evaluation of a deep learning lung nodule detection system

Author:

Katase Shichiro,Ichinose Akimichi,Hayashi Mahiro,Watanabe Masanaka,Chin Kinka,Takeshita Yuhei,Shiga Hisae,Tateishi Hidekatsu,Onozawa Shiro,Shirakawa Yuya,Yamashita Koji,Shudo Jun,Nakamura Keigo,Nakanishi Akihito,Kuroki Kazunori,Yokoyama Kenichi

Abstract

Abstract Background Lung cancer is the leading cause of cancer-related deaths throughout the world. Chest computed tomography (CT) is now widely used in the screening and diagnosis of lung cancer due to its effectiveness. Radiologists must identify each small nodule shadow from 3D volume images, which is very burdensome and often results in missed nodules. To address these challenges, we developed a computer-aided detection (CAD) system that automatically detects lung nodules in CT images. Methods A total of 1997 chest CT scans were collected for algorithm development. The algorithm was designed using deep learning technology. In addition to evaluating detection performance on various public datasets, its robustness to changes in radiation dose was assessed by a phantom study. To investigate the clinical usefulness of the CAD system, a reader study was conducted with 10 doctors, including inexperienced and expert readers. This study investigated whether the use of the CAD as a second reader could prevent nodular lesions in lungs that require follow-up examinations from being overlooked. Analysis was performed using the Jackknife Free-Response Receiver-Operating Characteristic (JAFROC). Results The CAD system achieved sensitivity of 0.98/0.96 at 3.1/7.25 false positives per case on two public datasets. Sensitivity did not change within the range of practical doses for a study using a phantom. A second reader study showed that the use of this system significantly improved the detection ability of nodules that could be picked up clinically (p = 0.026). Conclusions We developed a deep learning-based CAD system that is robust to imaging conditions. Using this system as a second reader increased detection performance.

Funder

Fujifilm Corporation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3