Author:
Katase Shichiro,Ichinose Akimichi,Hayashi Mahiro,Watanabe Masanaka,Chin Kinka,Takeshita Yuhei,Shiga Hisae,Tateishi Hidekatsu,Onozawa Shiro,Shirakawa Yuya,Yamashita Koji,Shudo Jun,Nakamura Keigo,Nakanishi Akihito,Kuroki Kazunori,Yokoyama Kenichi
Abstract
Abstract
Background
Lung cancer is the leading cause of cancer-related deaths throughout the world. Chest computed tomography (CT) is now widely used in the screening and diagnosis of lung cancer due to its effectiveness. Radiologists must identify each small nodule shadow from 3D volume images, which is very burdensome and often results in missed nodules. To address these challenges, we developed a computer-aided detection (CAD) system that automatically detects lung nodules in CT images.
Methods
A total of 1997 chest CT scans were collected for algorithm development. The algorithm was designed using deep learning technology. In addition to evaluating detection performance on various public datasets, its robustness to changes in radiation dose was assessed by a phantom study. To investigate the clinical usefulness of the CAD system, a reader study was conducted with 10 doctors, including inexperienced and expert readers. This study investigated whether the use of the CAD as a second reader could prevent nodular lesions in lungs that require follow-up examinations from being overlooked. Analysis was performed using the Jackknife Free-Response Receiver-Operating Characteristic (JAFROC).
Results
The CAD system achieved sensitivity of 0.98/0.96 at 3.1/7.25 false positives per case on two public datasets. Sensitivity did not change within the range of practical doses for a study using a phantom. A second reader study showed that the use of this system significantly improved the detection ability of nodules that could be picked up clinically (p = 0.026).
Conclusions
We developed a deep learning-based CAD system that is robust to imaging conditions. Using this system as a second reader increased detection performance.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献