DeepHipp: accurate segmentation of hippocampus using 3D dense-block based on attention mechanism

Author:

Wang Han,Lei Cai,Zhao Di,Gao Liwei,Gao Jingyang

Abstract

Abstract Background The hippocampus is a key area of the brain responsible for learning, memory, and other abilities. Accurately segmenting the hippocampus and precisely calculating the volume of the hippocampus is of great significance for predicting Alzheimer’s disease and amnesia. Most of the segmentation algorithms currently involved are based on templates, such as the more popular FreeSufer. Methods This study proposes Deephipp, a deep learning network based on a 3D dense block using an attention mechanism for accurate segmentation of the hippocampus. DeepHipp is based on the following novelties: (i) DeepHipp adopts powerful data augmentation schemes to enhance the segmentation ability. (ii) DeepHipp is designed to incorporate 3D dense-block to capture multiple-scale features of the hippocampus. (iii) DeepHipp creatively uses the attention mechanism in the field of hippocampal image segmentation, extracting useful hippocampus information in a massive feature map, and improving the accuracy and sensitivity of the model. Conclusions We describe the illustrative results and show extensive qualitative and quantitative comparisons with other methods. Our achievement demonstrates that the accuracy of DeepHipp can reach 83.63%, which is superior to most existing methods in terms of accuracy and efficiency of hippocampus segmentation. It is noticeable that deep learning can potentially lead to an effective segmentation of medical images.

Funder

Project supported by Beijing Natural Science Foundation

Beijing Science and Technology Planning Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3