STC-UNet: renal tumor segmentation based on enhanced feature extraction at different network levels

Author:

Hu Wei,Yang Shouyi,Guo Weifeng,Xiao Na,Yang Xiaopeng,Ren Xiangyang

Abstract

AbstractRenal tumors are one of the common diseases of urology, and precise segmentation of these tumors plays a crucial role in aiding physicians to improve diagnostic accuracy and treatment effectiveness. Nevertheless, inherent challenges associated with renal tumors, such as indistinct boundaries, morphological variations, and uncertainties in size and location, segmenting renal tumors accurately remains a significant challenge in the field of medical image segmentation. With the development of deep learning, substantial achievements have been made in the domain of medical image segmentation. However, existing models lack specificity in extracting features of renal tumors across different network hierarchies, which results in insufficient extraction of renal tumor features and subsequently affects the accuracy of renal tumor segmentation. To address this issue, we propose the Selective Kernel, Vision Transformer, and Coordinate Attention Enhanced U-Net (STC-UNet). This model aims to enhance feature extraction, adapting to the distinctive characteristics of renal tumors across various network levels. Specifically, the Selective Kernel modules are introduced in the shallow layers of the U-Net, where detailed features are more abundant. By selectively employing convolutional kernels of different scales, the model enhances its capability to extract detailed features of renal tumors across multiple scales. Subsequently, in the deeper layers of the network, where feature maps are smaller yet contain rich semantic information, the Vision Transformer modules are integrated in a non-patch manner. These assist the model in capturing long-range contextual information globally. Their non-patch implementation facilitates the capture of fine-grained features, thereby achieving collaborative enhancement of global–local information and ultimately strengthening the model’s extraction of semantic features of renal tumors. Finally, in the decoder segment, the Coordinate Attention modules embedding positional information are proposed aiming to enhance the model’s feature recovery and tumor region localization capabilities. Our model is validated on the KiTS19 dataset, and experimental results indicate that compared to the baseline model, STC-UNet shows improvements of 1.60%, 2.02%, 2.27%, 1.18%, 1.52%, and 1.35% in IoU, Dice, Accuracy, Precision, Recall, and F1-score, respectively. Furthermore, the experimental results demonstrate that the proposed STC-UNet method surpasses other advanced algorithms in both visual effectiveness and objective evaluation metrics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Joint Construction Project for Medical Science and Technology of Henan Province

Project of Young Talent Promotion of Henan Association for Science and Technology

Postdoctoral Science Foundation of Henan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3