A method for improving semantic segmentation using thermographic images in infants

Author:

Asano Hidetsugu,Hirakawa Eiji,Hayashi Hayato,Hamada Keisuke,Asayama Yuto,Oohashi Masaaki,Uchiyama Akira,Higashino Teruo

Abstract

Abstract Background Regulation of temperature is clinically important in the care of neonates because it has a significant impact on prognosis. Although probes that make contact with the skin are widely used to monitor temperature and provide spot central and peripheral temperature information, they do not provide details of the temperature distribution around the body. Although it is possible to obtain detailed temperature distributions using multiple probes, this is not clinically practical. Thermographic techniques have been reported for measurement of temperature distribution in infants. However, as these methods require manual selection of the regions of interest (ROIs), they are not suitable for introduction into clinical settings in hospitals. Here, we describe a method for segmentation of thermal images that enables continuous quantitative contactless monitoring of the temperature distribution over the whole body of neonates. Methods The semantic segmentation method, U-Net, was applied to thermal images of infants. The optimal combination of Weight Normalization, Group Normalization, and Flexible Rectified Linear Unit (FReLU) was evaluated. U-Net Generative Adversarial Network (U-Net GAN) was applied to thermal images, and a Self-Attention (SA) module was finally applied to U-Net GAN (U-Net GAN + SA) to improve precision. The semantic segmentation performance of these methods was evaluated. Results The optimal semantic segmentation performance was obtained with application of FReLU and Group Normalization to U-Net, showing accuracy of 92.9% and Mean Intersection over Union (mIoU) of 64.5%. U-Net GAN improved the performance, yielding accuracy of 93.3% and mIoU of 66.9%, and U-Net GAN + SA showed further improvement with accuracy of 93.5% and mIoU of 70.4%. Conclusions FReLU and Group Normalization are appropriate semantic segmentation methods for application to neonatal thermal images. U-Net GAN and U-Net GAN + SA significantly improved the mIoU of segmentation.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3