Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging

Author:

Mohammad Norhasmira,Muad Anuar Mikdad,Ahmad Rohana,Yusof Mohd Yusmiaidil Putera MohdORCID

Abstract

Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3