BPI-MVQA: a bi-branch model for medical visual question answering

Author:

Liu Shengyan,Zhang Xuejie,Zhou Xiaobing,Yang Jian

Abstract

AbstractBackgroundVisual question answering in medical domain (VQA-Med) exhibits great potential for enhancing confidence in diagnosing diseases and helping patients better understand their medical conditions. One of the challenges in VQA-Med is how to better understand and combine the semantic features of medical images (e.g., X-rays, Magnetic Resonance Imaging(MRI)) and answer the corresponding questions accurately in unlabeled medical datasets.MethodWe propose a novel Bi-branched model based on Parallel networks and Image retrieval for Medical Visual Question Answering (BPI-MVQA). The first branch of BPI-MVQA is a transformer structure based on a parallel network to achieve complementary advantages in image sequence feature and spatial feature extraction, and multi-modal features are implicitly fused by using the multi-head self-attention mechanism. The second branch is retrieving the similarity of image features generated by the VGG16 network to obtain similar text descriptions as labels.ResultThe BPI-MVQA model achieves state-of-the-art results on three VQA-Med datasets, and the main metric scores exceed the best results so far by 0.2$$\%$$%, 1.4$$\%$$%, and 1.1$$\%$$%.ConclusionThe evaluation results support the effectiveness of the BPI-MVQA model in VQA-Med. The design of the bi-branch structure helps the model answer different types of visual questions. The parallel network allows for multi-angle image feature extraction, a unique feature extraction method that helps the model better understand the semantic information of the image and achieve greater accuracy in the multi-classification of VQA-Med. In addition, image retrieval helps the model answer irregular, open-ended type questions from the perspective of understanding the information provided by images. The comparison of our method with state-of-the-art methods on three datasets also shows that our method can bring substantial improvement to the VQA-Med system.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3