Hippocampus segmentation after brain tumor resection via postoperative region synthesis

Author:

Tao Changjuan,Gu Difei,Huang Rui,Zhou Ling,Hu Zhiqiang,Chen Yuanyuan,Zhang Xiaofan,Li Hongsheng

Abstract

Abstract Purpose Accurately segmenting the hippocampus is an essential step in brain tumor radiotherapy planning. Some patients undergo brain tumor resection beforehand, which can significantly alter the postoperative regions’ appearances and intensity of the 3D MR images. However, there are limited tumor resection patient images for deep neural networks to be effective. Methods We propose a novel automatic hippocampus segmentation framework via postoperative image synthesis. The variational generative adversarial network consists of intensity alignment and a weight-map-guided feature fusion module, which transfers the postoperative regions to the preoperative images. In addition, to further boost the performance of hippocampus segmentation, We design a joint training strategy to optimize the image synthesis network and the segmentation task simultaneously. Results Comprehensive experiments demonstrate that our proposed method on the dataset with 48 nasopharyngeal carcinoma patients and 67 brain tumor patients observes consistent improvements over state-of-the-art methods. Conclusion The proposed postoperative image synthesis method act as a novel and powerful scheme to generate additional training data. Compared with existing deep learning methods, it achieves better accuracy for hippocampus segmentation of brain tumor patients who have undergone brain tumor resection. It can be used as an automatic contouring tool for hippocampus delineation in hippocampus-sparing radiotherapy.

Funder

Medical Health Science and Technology Project of Zhejiang Provincial Health Commission

Zhejiang Medical and Health Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3