Identification of triple-negative breast cancer and androgen receptor expression based on histogram and texture analysis of dynamic contrast-enhanced MRI

Author:

Xu Wen-juan,Zheng Bing-jie,Lu Jun,Liu Si-yun,Li Hai-liang

Abstract

Abstract Background Triple-negative breast cancer (TNBC) is highly malignant and has a poor prognosis due to the lack of effective therapeutic targets. Androgen receptor (AR) has been investigated as a possible therapeutic target. This study quantitatively assessed intratumor heterogeneity by histogram analysis of pharmacokinetic parameters and texture analysis on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to discriminate TNBC from non-triple-negative breast cancer (non-TNBC) and to identify AR expression in TNBC. Methods This retrospective study included 99 patients with histopathologically proven breast cancer (TNBC: 36, non-TNBC: 63) who underwent breast DCE-MRI before surgery. The pharmacokinetic parameters of DCE-MRI (Ktrans, Kep and Ve) and their corresponding texture parameters were calculated. The independent t-test, or Mann-Whitney U-test was used to compare quantitative parameters between TNBC and non-TNBC groups, and AR-positive (AR+) and AR-negative (AR-) TNBC groups. The parameters with significant difference between two groups were further involved in logistic regression analysis to build a prediction model for TNBC. The ROC analysis was conducted on each independent parameter and the TNBC predicting model for evaluating the discrimination performance. The area under the ROC curve (AUC), sensitivity and specificity were derived. Results The binary logistic regression analysis revealed that Kep_Range (p = 0.032) and Ve_SumVariance (p = 0.005) were significantly higher in TNBC than in non-TNBC. The AUC of the combined model for identifying TNBC was 0.735 (p < 0.001) with a cut-off value of 0.268, and its sensitivity and specificity were 88.89% and 52.38%, respectively. The value of Kep_Compactness2 (p = 0.049), Kep_SphericalDisproportion (p = 0.049), and Ve_GlcmEntropy (p = 0.008) were higher in AR + TNBC group than in AR-TNBC group. Conclusion Histogram and texture analysis of breast lesions on DCE-MRI showed potential to identify TNBC, and the specific features can be possible predictors of AR expression, enhancing the ability to individualize the treatment of patients with TNBC.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3