Author:
Xu Wen-juan,Zheng Bing-jie,Lu Jun,Liu Si-yun,Li Hai-liang
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) is highly malignant and has a poor prognosis due to the lack of effective therapeutic targets. Androgen receptor (AR) has been investigated as a possible therapeutic target. This study quantitatively assessed intratumor heterogeneity by histogram analysis of pharmacokinetic parameters and texture analysis on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to discriminate TNBC from non-triple-negative breast cancer (non-TNBC) and to identify AR expression in TNBC.
Methods
This retrospective study included 99 patients with histopathologically proven breast cancer (TNBC: 36, non-TNBC: 63) who underwent breast DCE-MRI before surgery. The pharmacokinetic parameters of DCE-MRI (Ktrans, Kep and Ve) and their corresponding texture parameters were calculated. The independent t-test, or Mann-Whitney U-test was used to compare quantitative parameters between TNBC and non-TNBC groups, and AR-positive (AR+) and AR-negative (AR-) TNBC groups. The parameters with significant difference between two groups were further involved in logistic regression analysis to build a prediction model for TNBC. The ROC analysis was conducted on each independent parameter and the TNBC predicting model for evaluating the discrimination performance. The area under the ROC curve (AUC), sensitivity and specificity were derived.
Results
The binary logistic regression analysis revealed that Kep_Range (p = 0.032) and Ve_SumVariance (p = 0.005) were significantly higher in TNBC than in non-TNBC. The AUC of the combined model for identifying TNBC was 0.735 (p < 0.001) with a cut-off value of 0.268, and its sensitivity and specificity were 88.89% and 52.38%, respectively. The value of Kep_Compactness2 (p = 0.049), Kep_SphericalDisproportion (p = 0.049), and Ve_GlcmEntropy (p = 0.008) were higher in AR + TNBC group than in AR-TNBC group.
Conclusion
Histogram and texture analysis of breast lesions on DCE-MRI showed potential to identify TNBC, and the specific features can be possible predictors of AR expression, enhancing the ability to individualize the treatment of patients with TNBC.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference36 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
2. Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, Colleoni M, Regan MM, Piccart-Gebhart M, Senn HJ, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the primary therapy of early breast Cancer 2017. ANN ONCOL. 2017;28(8):1700–12.
3. Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, Blayney DW, Niland JC, Winer EP, Weeks JC. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. CANCER-AM CANCER SOC. 2012;118(22):5463–72.
4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. CLIN CANCER RES. 2007;13(15 Pt 1):4429–34.
5. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast Cancer 2013. ANN ONCOL. 2013;24(9):2206–23.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献