Author:
Jiang Zhiyong,Sun Wenbo,Xu Dan,Mei Hao,Yuan Jianmin,Song Xiaopeng,Ma Chao,Xu Haibo
Abstract
Abstract
Purpose
This study investigated and compared the effects of Gd enhancement on brain tumours with a half-dose of contrast medium at 5.0 T and with a full dose at 3.0 T.
Methods
Twelve subjects diagnosed with brain tumours were included in this study and underwent MRI after contrast agent injection at 3.0 T (full dose) or 5.0 T (half dose) with a 3D T1-weighted gradient echo sequence. The postcontrast images were compared by two independent neuroradiologists in terms of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective image quality score on a ten-point Likert scale. Quantitative indices and subjective quality ratings were compared with paired Student's t tests, and interreader agreement was assessed with the intraclass correlation coefficient (ICC).
Results
A total of 16 enhanced tumour lesions were detected. The SNR was significantly greater at 5.0 T than at 3.0 T in grey matter, white matter and enhanced lesions (p < 0.001). The CNR was also significantly greater at 5.0 T than at 3.0 T for grey matter/tumour lesions, white matter/tumour lesions, and grey matter/white matter (p < 0.001). Subjective evaluation revealed that the internal structure and outline of the tumour lesions were more clearly displayed with a half-dose at 5.0 T (Likert scale 8.1 ± 0.3 at 3.0 T, 8.9 ± 0.3 at 5.0 T, p < 0.001), and the effects of enhancement in the lesions were comparable to those with a full dose at 3.0 T (7.8 ± 0.3 at 3.0 T, 8.7 ± 0.4 at 5.0 T, p < 0.001). All subjective scores were good to excellent at both 5.0 T and 3.0 T.
Conclusion
Both quantitative and subjective evaluation parameters suggested that half-dose enhanced scanning via 5.0 T MRI might be feasible for meeting clinical diagnostic requirements, as the image quality remains optimal. Enhanced scanning at 5.0 T with a half-dose of contrast agents might benefit patients with conditions that require less intravenous contrast agent, such as renal dysfunction.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Young RJ, Knopp EA. Brain MRI: tumor evaluation. J Magn Reson Imaging. 2006;24(4):709–24.
2. Cheng W, Ping Y, Zhang Y, Chuang KH, Liu Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J Healthc Eng. 2013;4(1):23–45.
3. Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–18.
4. Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.
5. Beam AS, Moore KG, Gillis SN, Ford KF, Gray T, Steinwinder AH, et al. GBCAs and risk for nephrogenic systemic fibrosis: a literature review. Radiol Technol. 2017;88(6):583–9.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献