Validity of ultrasonography-derived predictions for estimating skeletal muscle volume: a systematic literature review

Author:

Liegnell RasmusORCID,Wessman Fredrik,Shalabi Adel,Harringe Marita

Abstract

Abstract Background The amount of muscle volume (MV) varies between individuals and is important for health, well-being and performance. Therefore, the monitoring of MV using different imaging modalities is important. Magnetic resonance imaging (MRI) is considered the gold standard, but is not always easily accessible, and the examinations are expensive. Ultrasonography (US) is a much less expensive imaging method widely used to measure changes in muscle thickness (MT). Whether MT may translate into MV needs further investigation. Purpose The aim of this review is to clarify whether US-derived equations based on MT predict MV based on MRI. Methods A systematic literature review was conducted according to the PRISMA statement, searching the electronic databases PubMed, CINAHL and Web of Science, for currently published equations to estimate MV with US. Results The literature search resulted in 363 citations. Twelve articles met the eligibility criteria. Ten articles scored eight out of eleven on QUADAS and two scored nine. Thirty-six prediction equations were identified. R values ranged between 0.53 and 0.961 and the standard error of the estimate (SEE) ranged between 6 and 12% for healthy adult populations, and up to 25.6% for children with cerebral palsy. Eight studies evaluated the results with a Bland–Altman plot and found no systematic errors. The overall strength and quality of the evidence was rated “low quality” as defined by the GRADE system. Conclusions The validity of US-derived equations based on MT is specific to the populations from which it is developed. The agreement with MV based on MRI is moderate with the SEE ranging between 6 and 12% in healthy adult populations. Suggestions for future research include investigations as to whether testing positions or increasing the number of measuring sites could improve the validity for prediction equations.

Funder

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3