Real-time sports injury monitoring system based on the deep learning algorithm

Author:

Ren Luyao,Wang Yanyan,Li Kaiyong

Abstract

AbstractIn response to the low real-time performance and accuracy of traditional sports injury monitoring, this article conducts research on a real-time injury monitoring system using the SVM model as an example. Video detection is performed to capture human movements, followed by human joint detection. Polynomial fitting analysis is used to extract joint motion patterns, and the average of training data is calculated as a reference point. The raw data is then normalized to adjust position and direction, and dimensionality reduction is achieved through singular value decomposition to enhance processing efficiency and model training speed. A support vector machine classifier is used to classify and identify the processed data. The experimental section monitors sports injuries and investigates the accuracy of the system’s monitoring. Compared to mainstream models such as Random Forest and Naive Bayes, the SVM utilized demonstrates good performance in accuracy, sensitivity, and specificity, reaching 94.2%, 92.5%, and 96.0% respectively.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Olympic AI agenda: we need collaboration to achieve evolution;British Journal of Sports Medicine;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3