Impact of metal artifact reduction algorithm on gross tumor volume delineation in tonsillar cancer: reducing the interobserver variation

Author:

Fukugawa Yoshiyuki,Toya Ryo,Matsuyama Tomohiko,Watakabe Takahiro,Shimohigashi Yoshinobu,Kai Yudai,Matsumoto Tadashi,Oya Natsuo

Abstract

Abstract Background Patients with tonsillar cancer (TC) often have dental fillings that can significantly degrade the quality of computed tomography (CT) simulator images due to metal artifacts. We evaluated whether the use of the metal artifact reduction (MAR) algorithm reduced the interobserver variation in delineating gross tumor volume (GTV) of TC. Methods Eighteen patients with TC with dental fillings were enrolled in this study. Contrast-enhanced CT simulator images were reconstructed using the conventional (CTCONV) and MAR algorithm (CTMAR). Four board-certified radiation oncologists delineated the GTV of primary tumors using routine clinical data first on CTCONV image datasets (GTVCONV), followed by CTCONV and CTMAR fused image datasets (GTVMAR) at least 2 weeks apart. Intermodality differences in GTV values and Dice similarity coefficient (DSC) were compared using Wilcoxon’s signed-rank test. Results GTVMAR was significantly smaller than GTVCONV for three observers. The other observer showed no significant difference between GTVCONV and GTVMAR values. For all four observers, the mean GTVCONV and GTVMAR values were 14.0 (standard deviation [SD]: 7.4) cm3 and 12.1 (SD: 6.4) cm3, respectively, with the latter significantly lower than the former (p < 0.001). The mean DSC of GTVCONV and GTVMAR was 0.74 (SD: 0.10) and 0.77 (SD: 0.10), respectively, with the latter significantly higher than that of the former (p < 0.001). Conclusions The use of the MAR algorithm led to the delineation of smaller GTVs and reduced interobserver variations in delineating GTV of the primary tumors in patients with TC.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imaging in translational cancer research;Cancer Biology & Medicine;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3