Recognition of eye diseases based on deep neural networks for transfer learning and improved D-S evidence theory

Author:

Du Fanyu,Zhao Lishuai,Luo Hui,Xing Qijia,Wu Jun,Zhu Yuanzhong,Xu Wansong,He Wenjing,Wu Jianfang

Abstract

Abstract Background Human vision has inspired significant advancements in computer vision, yet the human eye is prone to various silent eye diseases. With the advent of deep learning, computer vision for detecting human eye diseases has gained prominence, but most studies have focused only on a limited number of eye diseases. Results Our model demonstrated a reduction in inherent bias and enhanced robustness. The fused network achieved an Accuracy of 0.9237, Kappa of 0.878, F1 Score of 0.914 (95% CI [0.875–0.954]), Precision of 0.945 (95% CI [0.928–0.963]), Recall of 0.89 (95% CI [0.821–0.958]), and an AUC value of ROC at 0.987. These metrics are notably higher than those of comparable studies. Conclusions Our deep neural network-based model exhibited improvements in eye disease recognition metrics over models from peer research, highlighting its potential application in this field. Methods In deep learning-based eye recognition, to improve the learning efficiency of the model, we train and fine-tune the network by transfer learning. In order to eliminate the decision bias of the models and improve the credibility of the decisions, we propose a model decision fusion method based on the D-S theory. However, D-S theory is an incomplete and conflicting theory, we improve and eliminate the existed paradoxes, propose the improved D-S evidence theory(ID-SET), and apply it to the decision fusion of eye disease recognition models.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Ensemble Learning for Classification of Glaucoma from Smartphone Fundus Images;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26

2. Research on Feature Extraction Strategies for Cybercrime Crimes Combined with Deep Learning and Their Probabilistic Models;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3