Author:
Du Fanyu,Zhao Lishuai,Luo Hui,Xing Qijia,Wu Jun,Zhu Yuanzhong,Xu Wansong,He Wenjing,Wu Jianfang
Abstract
Abstract
Background
Human vision has inspired significant advancements in computer vision, yet the human eye is prone to various silent eye diseases. With the advent of deep learning, computer vision for detecting human eye diseases has gained prominence, but most studies have focused only on a limited number of eye diseases.
Results
Our model demonstrated a reduction in inherent bias and enhanced robustness. The fused network achieved an Accuracy of 0.9237, Kappa of 0.878, F1 Score of 0.914 (95% CI [0.875–0.954]), Precision of 0.945 (95% CI [0.928–0.963]), Recall of 0.89 (95% CI [0.821–0.958]), and an AUC value of ROC at 0.987. These metrics are notably higher than those of comparable studies.
Conclusions
Our deep neural network-based model exhibited improvements in eye disease recognition metrics over models from peer research, highlighting its potential application in this field.
Methods
In deep learning-based eye recognition, to improve the learning efficiency of the model, we train and fine-tune the network by transfer learning. In order to eliminate the decision bias of the models and improve the credibility of the decisions, we propose a model decision fusion method based on the D-S theory. However, D-S theory is an incomplete and conflicting theory, we improve and eliminate the existed paradoxes, propose the improved D-S evidence theory(ID-SET), and apply it to the decision fusion of eye disease recognition models.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献