Ultrasound contrast-enhanced radiomics model for preoperative prediction of the tumor grade of clear cell renal cell carcinoma: an exploratory study

Author:

Luo Yujie,Liu Xiaoling,Jia Yiping,Zhao Qin

Abstract

Abstract Background This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics. Methods This retrospective study included 122 patients diagnosed as ccRCC after surgical resection. They were divided into a training set (n = 86) and a testing set(n = 36). CEUS radiographic features were extracted from CEUS images, and XGBoost ML models (US, CP, and MP model) with independent features at different phases were established. Multivariate regression analysis was performed on the characteristics of different radiomics phases to determine the indicators used for developing the prediction model of the combined CEUS model and establishing the XGBoost model. The training set was used to train the above four kinds of radiomics models, which were then tested in the testing set. Radiologists evaluated tumor characteristics, established a CEUS reading model, and compared the diagnostic efficacy of CEUS reading model with independent characteristics and combined CEUS model prediction models. Results The combined CEUS radiomics model demonstrated the best performance in the training set, with an area under the curve (AUC) of 0.84, accuracy of 0.779, sensitivity of 0.717, specificity of 0.879, positive predictive value (PPV) of 0.905, and negative predictive value (NPV) of0.659. In the testing set, the AUC was 0.811, with an accuracy of 0.784, sensitivity of 0.783, specificity of 0.786, PPV of 0.857, and NPV of 0.688. Conclusions The radiomics model based on CEUS exhibits high accuracy in non-invasive prediction of ccRCC. This model can be utilized for non-invasive detection of WHO/ISUP nuclear grading of ccRCC and can serve as an effective tool to assist clinical decision-making processes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3