Optimization of the image contrast for the developing fetal brain using 3D radial VIBE sequence in 3 T magnetic resonance imaging

Author:

Liao Yi,Li Xuesheng,Jia Fenglin,Ye Zhijun,Ning Gang,Liu Sai,Li Pei,Fu Chuan,Li Qing,Wang Shaoyu,Zhang Huapeng,Qu Haibo

Abstract

Abstract Background Faster and motion robust magnetic resonance imaging (MRI) sequences are desirable in fetal brain MRI. T1-weighted images are essential for evaluating fetal brain development. We optimized the radial volumetric interpolated breath-hold examination (VIBE) sequence for qualitative T1-weighted images of the fetal brain with improved image contrast and reduced motion sensitivity. Materials and methods This was an institutional review board-approved prospective study. Thirty-five pregnant subjects underwent fetal brain scan at 3 Tesla MRI. T1-weighted images were acquired using a 3D radial VIBE sequence with flip angles of 6º, 9º, 12º, and 15º. T1-weighted images of Cartesian VIBE sequence were acquired in three of the subjects. Qualitative assessments including image quality and motion artifact severity were evaluated. The image contrast ratio between gray and white matter were measured. Interobserver reliability and intraobserver repeatability were assessed using intraclass correlation coefficient (ICC). Results Interobserver reliability and intraobserver repeatability universally revealed almost perfect agreement (ICC > 0.800). Significant differences in image quality were detected in basal ganglia (P = 0.023), central sulcus (P = 0.028), myelination (P = 0.007) and gray matter (P = 0.023) among radial VIBE with flip angles 6º, 9º, 12º, 15º. Image quality at the 9º flip angle in radial VIBE was generally better than flip angle of 15º. Radial VIBE sequence with 9º flip angle of gray matter was significantly different by gestational age (GA) before and after 28 weeks (P = 0.036). Quantified image contrast was significantly different among different flip angles, consistent with qualitative analysis of image quality. Conclusions Three-dimensional radial VIBE with 9º flip angle provides optimal, stable T1-weighted images of the fetal brain. Fetal brain structure and development can be evaluated using high-quality images obtained using this angle. However, different scanners will achieve different TRs and so the FA should be re-optimized each time a new protocol is employed.

Funder

The National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3