Author:
Liu Xiang,Sun Zhaonan,Han Chao,Cui Yingpu,Huang Jiahao,Wang Xiangpeng,Zhang Xiaodong,Wang Xiaoying
Abstract
Abstract
Background
The 3D U-Net model has been proved to perform well in the automatic organ segmentation. The aim of this study is to evaluate the feasibility of the 3D U-Net algorithm for the automated detection and segmentation of lymph nodes (LNs) on pelvic diffusion-weighted imaging (DWI) images.
Methods
A total of 393 DWI images of patients suspected of having prostate cancer (PCa) between January 2019 and December 2020 were collected for model development. Seventy-seven DWI images from another group of PCa patients imaged between January 2021 and April 2021 were collected for temporal validation. Segmentation performance was assessed using the Dice score, positive predictive value (PPV), true positive rate (TPR), and volumetric similarity (VS), Hausdorff distance (HD), the Average distance (AVD), and the Mahalanobis distance (MHD) with manual annotation of pelvic LNs as the reference. The accuracy with which the suspicious metastatic LNs (short diameter > 0.8 cm) were detected was evaluated using the area under the curve (AUC) at the patient level, and the precision, recall, and F1-score were determined at the lesion level. The consistency of LN staging on an hold-out test dataset between the model and radiologist was assessed using Cohen’s kappa coefficient.
Results
In the testing set used for model development, the Dice score, TPR, PPV, VS, HD, AVD and MHD values for the segmentation of suspicious LNs were 0.85, 0.82, 0.80, 0.86, 2.02 (mm), 2.01 (mm), and 1.54 (mm) respectively. The precision, recall, and F1-score for the detection of suspicious LNs were 0.97, 0.98 and 0.97, respectively. In the temporal validation dataset, the AUC of the model for identifying PCa patients with suspicious LNs was 0.963 (95% CI: 0.892–0.993). High consistency of LN staging (Kappa = 0.922) was achieved between the model and expert radiologist.
Conclusion
The 3D U-Net algorithm can accurately detect and segment pelvic LNs based on DWI images.
Funder
Capital’s Funds for Health Improvement and Research
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献