Subcategorization of suspicious non-mass-like enhancement lesions(BI-RADS-MRI Category4)

Author:

Liu Dandan,Ba Zhaogui,Gao Yan,Wang Linhong

Abstract

Abstract Background This study aims to providing a reliable method that has good compliance and is easy to master to improve the accuracy of NMLE diagnosis. Methods This study retrospectively analyzed 122 cases of breast non-mass-like enhancement (NMLE) lesions confirmed by postoperative histology. MRI features and clinical features of benign and malignant non-mass enhancement breast lesions were compared by using independent sample t test, χ2test and Fisher exact test. P < 0.05 was considered statistically significant. Statistically significant parameters were then included in logistic regression analysis to build a multiparameter differential diagnosis modelto subdivide the BI-RADS Category 4. Results The distribution (odds ratio (OR) = 8.70), internal enhancement pattern (OR = 6.29), ADC value (OR = 5.56), and vascular sign (OR = 2.84) of the lesions were closely related to the benignity and malignancy of the lesions. These signs were used to build the MRI multiparameter model for differentiating benign and malignant non-mass enhancement breast lesions. ROC analysis revealed that its optimal diagnostic cut-off value was 5. The diagnostic specificity and sensitivity were 87.01% and 82.22%, respectively. Lesions with 1–6 points were considered BI-RADS category 4 lesions, and the positive predictive values of subtypes 4a, 4b, and 4c lesions were15.79%, 31.25%, and 77.78%, respectively. Conclusions Comprehensively analyzing the features of MRI of non-mass enhancement breast lesions and building the multiparameter differential diagnosis model could improve the differential diagnostic performance of benign and malignant lesions.

Funder

Program of Science and Technology Development of Ji'nan

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3