Alterations in structural integrity of superior longitudinal fasciculus III associated with cognitive performance in cerebral small vessel disease

Author:

Wang YifanORCID,Wang Tianyao,Yu Zekuan,Wang Junjie,Liu Fang,Ye Mengwen,Fang Xianjin,Liu Yinhong,Liu JunORCID

Abstract

Abstract Background This study aimed to investigate the alterations in structural integrity of superior longitudinal fasciculus subcomponents with increasing white matter hyperintensity severity as well as the relationship to cognitive performance in cerebral small vessel disease. Methods 110 cerebral small vessel disease study participants with white matter hyperintensities were recruited. According to Fazekas grade scale, white matter hyperintensities of each subject were graded. All subjects were divided into two groups. The probabilistic fiber tracking method was used for analyzing microstructure characteristics of superior longitudinal fasciculus subcomponents. Results Probabilistic fiber tracking results showed that mean diffusion, radial diffusion, and axial diffusion values of the left arcuate fasciculus as well as the mean diffusion value of the right arcuate fasciculus and left superior longitudinal fasciculus III in high white matter hyperintensities rating group were significantly higher than those in low white matter hyperintensities rating group (p < 0.05). The mean diffusion value of the left superior longitudinal fasciculus III was negatively related to the Montreal Cognitive Assessment score of study participants (p < 0.05). Conclusions The structural integrity injury of bilateral arcuate fasciculus and left superior longitudinal fasciculus III is more severe with the aggravation of white matter hyperintensities. The structural integrity injury of the left superior longitudinal fasciculus III correlates to cognitive impairment in cerebral small vessel disease.

Funder

Anhui University of Science and Technology

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3