Author:
Zhang Haiqiong,Wang Jingnan,Li Nan,Zhang Yue,Cui Jie,Huo Li,Zhang Hui
Abstract
Abstract
Background
The maximum likelihood activity and attenuation (MLAA) reconstruction algorithm has been proposed to jointly estimate tracer activity and attenuation at the same time, and proven to be a promising solution to the CT attenuation correction (CT-AC) artifacts in PET images. This study aimed to perform a quantitative evaluation and clinical validation of the MLAA method.
Methods
A uniform cylinder phantom filled with 18F-FDG solution was scanned to optimize the reconstruction parameters for the implemented MLAA algorithm. 67 patients who underwent whole-body 18F-FDG PET/CT scan were retrospectively recruited. PET images were reconstructed using MLAA and clinical standard OSEM algorithm with CT-AC (CT-OSEM). The mean and maximum standardized uptake values (SUVmean and SUVmax) in regions of interest (ROIs) of organs, high uptake lesions and areas affected by metal implants and respiration motion artifacts were quantitatively analyzed.
Results
In quantitative analysis, SUVs in patient’s organ ROIs between two methods showed R2 ranging from 0.91 to 0.98 and k ranging from 0.90 to 1.06, and the average SUVmax and SUVmean differences between two methods were within 10% range, except for the lung ROI, which was 10.5% and 16.73% respectively. The average SUVmax and SUVmean differences of a total of 117 high uptake lesions were 7.25% and 7.10% respectively. 20 patients were identified to have apparent respiration motion artifacts in the liver in CT-OSEM images, and the SUVs differences between two methods measured at dome of the liver were significantly larger than measured at middle part of the liver. 10 regions with obvious metal artifacts were identified in CT-OSEM images and the average SUVmean and SUVmax differences in metal implants affected regions were reported to be 52.90% and 56.20% respectively.
Conclusions
PET images reconstructed using MLAA are clinically acceptable in terms of image quality as well as quantification and it is a useful tool in clinical practice, especially when CT-AC may cause respiration motion and metal artifacts. Moreover, this study also provides technical reference and data support for the future iteration and development of PET reconstruction technology of SUV accurate quantification.
Funder
CAMS fund for Rare Diseases Research
Tsinghua University and PUMCH joint fund
National Key Research and Development Program of China
Tsinghua University Initiative Scientific Research Program
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference30 articles.
1. Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50. https://doi.org/10.1088/0031-9155/54/7/005.
2. Bettinardi V, Picchio M, Di Muzio N, Gianolli L, Gilardi MC, Messa C. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol. 2010;96:311–6. https://doi.org/10.1016/j.radonc.2010.07.014.
3. Carney J, Beyer T, Brasse D, Yap JT, Townsend DW. CT-based attenuation correction for PET/CT scanners in the presence of contrast agent. In: 2002 IEEE nuclear science symposium conference record, vol. 3; 2002. p. 1443–6.
4. Schabel C, Gatidis S, Bongers M, Hüttig F, Bier G, Kupferschlaeger J, et al. Improving CT-based PET attenuation correction in the vicinity of metal implants by an iterative metal artifact reduction algorithm of CT data and its comparison to dual-energy–based strategies: a phantom study. Invest Radiol. 2017;52:61–5. https://doi.org/10.1097/RLI.0000000000000306.
5. Panin VY, Defrise M, Nuyts J, Rezaei A, Casey ME. Reconstruction of uniform sensitivity emission image with partially known axial attenuation information in PET-CT scanners. In: 2012 IEEE nuclear science symposium and medical imaging conference record (NSS/MIC); 2012. p. 2166–73.