Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer

Author:

Tang Bin,Lenkowicz Jacopo,Peng Qian,Boldrini Luca,Hou Qing,Dinapoli Nicola,Valentini Vincenzo,Diao Peng,Yin Gang,Orlandini Lucia Clara

Abstract

Abstract Purpose This study aims to further enhance a validated radiomics-based model for predicting pathologic complete response (pCR) after chemo‑radiotherapy in locally advanced rectal cancer (LARC) for use in clinical practice. Methods A generalized linear model (GLM) to predict pCR in LARC patients previously trained in Europe and validated with an external inter-continental cohort (59 patients), was first examined with further 88 intercontinental patient datasets to assess its reproducibility; then new radiomics and clinical features, and validation methods were investigated to build a new model for enhancing the pCR prediction for patients admitted to our department. The patients were divided into training group (75%) and validation group (25%) according to their demographic. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to reduce the dimensionality of the extracted features of the training group and select the optimal ones; the performance of the reference GLM and enhanced models was compared through the area under curve (AUC) of the receiver operating characteristics. Results The value of AUC of the reference model was 0.831 (95% CI, 0.701–0.961), and 0.828 (95% CI, 0.700–0.956) in the original and new validation cohorts, respectively, showing a reproducibility in the applicability of the GLM model. Eight features were found to be significant with LASSO and used to establish an enhanced model. The AUC of the enhanced model of 0.926 (95% CI, 0.859–0.993) for training, and 0.926 (95% CI, 0.767–1.00) for the validation group shows better performance than the reference model. Conclusions The GLM model shows good reproducibility in predicting pCR in LARC; the enhanced model has the potential to improve prediction accuracy and may be a candidate in clinical practice.

Funder

Sichuan Province Science and Technology Support Program

Sichuan Cancer Hospital Youth Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3